Toughening Mechanism of CaAl12O19 in Red Mud–Al2O3 Composite Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Composite Ceramics
2.3. Characterization of Composite Ceramics
3. Results and Discussion
3.1. Phase Composition
3.2. Microstructural Characterization
3.3. Mechanical Properties
3.4. Wettability at High Temperature
4. Conclusions
- (1)
- Red mud can significantly lower the sintering temperature of Al2O3 ceramics. The samples sintered at 1500 °C with the addition of 1.5 wt.% Cr2O3 have better properties, with a bending strength of 297.03 MPa, a fracture toughness of 6.50 MPa/m1/2, a hardness value of 17.44 GPa and a densification of 97.75%.
- (2)
- There are three different distributions of CA6 in ARC composite ceramics. CA6 distributing at grain boundaries can fill the voids between grains and improve the densification of the ceramics. CA6 distributing parallel to the Al2O3 grains extends the crack propagation path. CA6 and alumina grains form an “endo-crystalline” structure, which can change the direction of crack propagation and transform from an inter-granular fracture to trans-granular fracture.
- (3)
- Cu liquid does not wet the ARC composite ceramics at high temperatures, no chemical reaction occurs at the interface, and there is no elemental diffusion into Cu liquid. Moreover, the ARC composite ceramics have a higher surface energy than Al2O3 at high temperatures and decrease more slowly with temperature.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, R.-X.; Poon, C.-S. Utilization of red mud derived from bauxite in self-compacting concrete. J. Clean. Prod. 2016, 112, 384–391. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.; Liu, X. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials. J. Hazard. Mater. 2016, 314, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, W.; Liu, H.; Han, C. Recycling of waste red mud for production of ceramic floor tile with high strength and lightweight. J. Alloys Compd. 2018, 748, 876–881. [Google Scholar] [CrossRef]
- He, H.; Yue, Q.; Qi, Y.; Gao, B.; Zhao, Y.; Yu, H.; Li, J.; Li, Q.; Wang, Y. The effect of incorporation of red mud on the properties of clay ceramic bodies. Appl. Clay Sci. 2012, 70, 67–73. [Google Scholar] [CrossRef]
- Pérez-Villarejo, L.; Corpas-Iglesias, F.A.; Martínez-Martínez, S.; Artiaga, R.; Pascual-Cosp, J. Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Constr. Build. Mater. 2012, 35, 656–665. [Google Scholar] [CrossRef]
- Gonzalez Triviño, I.; Pascual-Cosp, J.; Moreno, B.; Benítez-Guerrero, M. Manufacture of ceramics with high mechanical properties from red mud and granite waste. Mater. Construcción 2019, 69, 180. [Google Scholar] [CrossRef]
- Nath, M.; Kumar, P.; Maldhure, A.V.; Sinhamahapatra, S.; Dana, K.; Ghosh, A.; Tripathi, H.S. Anomalous densification behavior of Al2O3–Cr2O3 system. Mater. Charact. 2016, 111, 8–13. [Google Scholar] [CrossRef]
- Kafkaslıoğlu Yıldız, B.; Yılmaz, H.; Tür, Y.K. Evaluation of mechanical properties of Al2O3–Cr2O3 ceramic system prepared in different Cr2O3 ratios for ceramic armour components. Ceram. Int. 2019, 45, 20575–20582. [Google Scholar] [CrossRef]
- Azhar, A.Z.A.; Choong, L.C.; Mohamed, H.; Ratnam, M.M.; Ahmad, Z.A. Effects of Cr2O3 addition on the mechanical properties, microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts. J. Alloys Compd. 2012, 513, 91–96. [Google Scholar] [CrossRef]
- Manshor, H.; Azhar, A.Z.A.; Rashid, R.A.; Sulaiman, S.; Abdullah, E.C.; Ahmad, Z.A. Effects of Cr2O3 addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with TiO2 (ZTA–TiO2) ceramic composite. Int. J. Refract. Met. Hard Mater. 2016, 61, 40–45. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, H.; Yu, J.; Zhang, H.; Gao, H.; Chen, Q. Crystal structure and properties of Al2O3–Cr2O3 solid solutions with different Cr2O3 contents. Ceram. Int. 2018, 44, 1356–1361. [Google Scholar] [CrossRef]
- An, L.; Chan, H.M.; Soni, K.K. Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites. J. Mater. Sci. 1996, 31, 3223–3229. [Google Scholar] [CrossRef]
- Domínguez, C.; Chevalier, J.; Torrecillas, R.; Fantozzi, G. Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 2001, 21, 381–387. [Google Scholar] [CrossRef]
- Song, H.; Coble, R.L. Origin and Growth Kinetics of Platelike Abnormal Grains in Liquid-Phase-Sintered Alumina. J. Am. Ceram. Soc. 1990, 73, 2077–2085. [Google Scholar] [CrossRef]
- Cahoon, H.P.; Christensen, C.J. Sintering and Grain Growth of Alpha-Alumina. J. Am. Ceram. Soc. 1956, 39, 337–344. [Google Scholar] [CrossRef]
- Cho, S.-A.; Arenas, F.J.; Ochoa, J. Densification and hardness of Al2O3–Cr2O3 system with and without Ti addition. Ceram. Int. 1990, 16, 301–309. [Google Scholar] [CrossRef]
- Paek, Y.K.; Lee, H.Y.; Kang, S.J.L. Direction of Liquid Film Migration Induced by Chromic Oxide in Alumina-Anorthite. J. Am. Ceram. Soc. 1996, 79, 3029–3032. [Google Scholar] [CrossRef]
- Kunkun, C.; Tao, F.; Yingyi, Z.; Jie, W.; Haobo, M.; Tianbiao, T. Microstructure and mechanical properties of CaAl12O19 reinforced Al2O3–Cr2O3 composites. J. Eur. Ceram. Soc. 2021, 41, 7935–7945. [Google Scholar] [CrossRef]
- An, L.; Chan, H.M. R-Curve Behavior of In-Situ-Toughened Al2O3:CaAl12O19 Ceramic Composites. J. Am. Ceram. Soc. 1996, 79, 3142–3148. [Google Scholar] [CrossRef]
- Yin, Z.; Huang, C.; Zou, B.; Liu, H.; Zhu, H.; Wang, J. Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material. Mater. Sci. Eng. A 2013, 577, 9–15. [Google Scholar] [CrossRef]
- Bai, X.; Huang, C.; Wang, J.; Zou, B.; Liu, H. Fabrication and characterization of Si3N4 reinforced Al2O3-based ceramic tool materials. Ceram. Int. 2015, 41, 12798–12804. [Google Scholar] [CrossRef]
- Xi, Z.; Jinsheng, L.; Junguo, L.; Yanan, Z.; Suju, H.; Pengyao, L.; Hao, N. The properties characterization and strengthening-toughening mechanism of Al2O3-CA6-MA-Ni multi-phase composites prepared by adding calcined dolomite. Mater. Charact. 2022, 186, 111810. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, H.S.; Seo, M.Y.; Gauckler, L.J. Advanced ceramics in wire bonding capillaries for semiconductor package technology. Mater. Sci. Eng. A 2008, 498, 129–134. [Google Scholar] [CrossRef]
- Sharma, P.K.; Rao, K.H. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv. Colloid Interface Sci. 2002, 98, 341–463. [Google Scholar] [CrossRef] [PubMed]
- Chawla, K.K.; Withers, P.J. International Materials Reviews in 2013. Int. Mater. Rev. 2013, 58, 1. [Google Scholar] [CrossRef]
- Bao, S.; Tang, K.; Kvithyld, A.; Engh, T.; Tangstad, M. Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Trans. Nonferrous Met. Soc. China 2012, 22, 1930–1938. [Google Scholar] [CrossRef]
Fe2O3 | Al2O3 | SiO2 | CaO | Na2O | TiO2 | Loss |
---|---|---|---|---|---|---|
29.60 | 18.90 | 16.90 | 15.60 | 11.10 | 5.78 | 2.12 |
Sample | Al2O3 | RM | Cr2O3 |
---|---|---|---|
A | 100 | 0 | 0 |
ARC0 | 90 | 10 | 0 |
ARC1 | 89.1 | 9.9 | 1 |
ARC2 | 88.65 | 9.85 | 1.5 |
ARC3 | 88.2 | 9.8 | 2 |
ARC4 | 87.75 | 9.75 | 2.5 |
ARC5 | 87.3 | 9.7 | 3 |
Sample | a | b | R2 | A | B | C | D |
---|---|---|---|---|---|---|---|
ARC1 | −2.32 | 2.28 | 0.94 | −2.95 × 10−11 | 1.82 × 10−8 | −0.0027 | 13.90 |
ARC2 | −2.37 | 2.34 | 0.98 | −3.08 × 10−11 | 2.00 × 10−8 | −0.0028 | 14.43 |
ARC3 | −2.56 | 2.55 | 0.92 | −3.60 × 10−11 | 2.91 × 10−8 | −0.0032 | 16.34 |
ARC4 | −2.68 | 2.69 | 0.96 | −3.94 × 10−11 | 3.47 × 10−8 | −0.0035 | 17.68 |
ARC5 | −2.38 | 2.33 | 0.92 | −3.11 × 10−11 | 2.24 × 10−8 | −0.0028 | 14.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Li, A.; Wang, Z. Toughening Mechanism of CaAl12O19 in Red Mud–Al2O3 Composite Ceramics. Crystals 2024, 14, 924. https://doi.org/10.3390/cryst14110924
Jiang S, Li A, Wang Z. Toughening Mechanism of CaAl12O19 in Red Mud–Al2O3 Composite Ceramics. Crystals. 2024; 14(11):924. https://doi.org/10.3390/cryst14110924
Chicago/Turabian StyleJiang, Shiwei, Anmin Li, and Zhengliang Wang. 2024. "Toughening Mechanism of CaAl12O19 in Red Mud–Al2O3 Composite Ceramics" Crystals 14, no. 11: 924. https://doi.org/10.3390/cryst14110924
APA StyleJiang, S., Li, A., & Wang, Z. (2024). Toughening Mechanism of CaAl12O19 in Red Mud–Al2O3 Composite Ceramics. Crystals, 14(11), 924. https://doi.org/10.3390/cryst14110924