Advancements in the Engineering Modification of Sucrose Phosphorylase
Abstract
:1. Introduction
2. Structure and Catalytic Mechanism of SPase
3. Engineering Modifications of SPase
3.1. Thermostability Enhancement of SPase
3.1.1. Improving SPase Thermostability Through Protein Engineering
3.1.2. Thermostability Modification of SPase Based on Immobilization Strategy
3.2. Transglycosylation Activity Enhancement of SPase
3.2.1. Enhancing the Transglycosylation Activity of SPase by Protein Engineering
Influence of Q345 Site on the Transglycosylation Activity of SPase
Mutations at Other Sites by Protein Engineering
3.2.2. Application of Other Strategies in the Modification of SPase Transglycosylation Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desmet, T.; Soetaert, W. Enzymatic glycosyl transfer: Mechanisms and applications. Biocatal. Biotransform. 2011, 29, 1–18. [Google Scholar] [CrossRef]
- Stam, M.R.; Danchin, E.G.; Rancurel, C.; Coutinho, P.M.; Henrissat, B. Dividing the large glycoside hydrolase family 13 into subfamilies: Towards improved functional annotations of alpha–amylase–related proteins. Protein Eng. Des. Sel. 2006, 19, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Goedl, C.; Schwarz, A.; Minani, A.; Nidetzky, B. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha–D–glucose 1–phosphate. J. Biotechnol. 2007, 129, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Beerens, K.; De Winter, K.; Van de Wane, D.V.; Grootaer, C.; Kamiloglu, S.; Miclotte, L.; Van de Wiele, T.V.; Van Camp, J.; Dewettinck, K.; Desmet, T. Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale–Up and Application Testing. J. Agric. Food Chem. 2017, 65, 6030–6041. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.; Görl, J.; Timm, M.; Seibel, J. Synthesis of the rare disaccharide nigerose by structure–based design of a phosphorylase mutant with altered regioselectivity. Chem. Commun. 2016, 52, 4625–4627. [Google Scholar] [CrossRef]
- Wei, W.; Qi, D.; Diao, M.; Zhaoxin, L.; Lv, F.; Zhao, H. β–galactosidase–catalyzed synthesis of 3–O–β–D–galactopyranosyl–sn–glycerol: Optimization by response surface methodology. Biocatal. Biotransform. 2016, 34, 152–160. [Google Scholar] [CrossRef]
- Goedl, C.; Sawangwan, T.; Mueller, M.; Schwarz, A.; Nidetzky, B. A high–yielding biocatalytic process for the production of 2–O–(α–D–glucopyranosyl)–sn–glycerol, a natural osmolyte and useful moisturizing ingredient. Angew. Chem. Int. Ed. Engl. 2008, 47, 10086–10089. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Luley-Goedl, C.; Leitner, E.; Sawangwan, T.; Nidetzky, B. Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. J. Biotechnol. 2017, 257, 131–138. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, R.; Shi, Y.; Ma, W.; Liu, K.; Lu, Y.; Zhu, L.; Chen, X. Sucrose phosphorylase from Lactobacillus reuteri: Characterization and application of enzyme for production of 2–O–α–d–glucopyranosyl glycerol. Int. J. Biol. Macromol. 2022, 209, 376–384. [Google Scholar] [CrossRef]
- Kwon, T.; Kim, C.T.; Lee, J.H. Transglucosylation of ascorbic acid to ascorbic acid 2–glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum. Biotechnol. Lett. 2007, 29, 611–615. [Google Scholar] [CrossRef]
- Sugimoto, K.; Nomura, K.; Nishiura, H.; Ohdan, K.; Ohdan, K.; Hayashi, H.; Kuriki, T. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. J. Biosci. Bioeng. 2007, 104, 22–29. [Google Scholar] [CrossRef] [PubMed]
- O′ Neill, E.C.; Field, R.A. Enzymatic synthesis using glycoside phosphorylases. Carbohydr. Res. 2015, 403, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Kitaoka, M.; Svensson, B.; Ohtsubo, K. Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr. Opin. Chem. Biol. 2013, 17, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, J.; Wu, D. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme. Microb. Cell Factories 2018, 17, 23. [Google Scholar] [CrossRef]
- Laparra, J.M.; Díez-Municio, M.; Herrero, M.; Moreno, F.J. Structural differences of prebiotic oligosaccharides influence their capability to enhance iron absorption in deficient rats. Food Funct. 2014, 5, 2430–2437. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; He, X.; Chen, L.; Cheng, Y.; Jia, H.; Yan, M.; Chen, K. Characterisation of a Thermobacillus sucrose phosphorylase and its utility in enzymatic synthesis of 2–O–alpha–d–glucopyranosyl–l–ascorbic acid. J. Biotechnol. 2019, 305, 27–34. [Google Scholar] [CrossRef]
- Shin, M.H.; Cheong, N.-Y.; Lee, J.-H.; Kim, K.H. Transglucosylation of caffeic acid by a recombinant sucrose phosphorylase in aqueous buffer and aqueous–supercritical CO2 media. Food Chem. 2009, 115, 1028–1033. [Google Scholar] [CrossRef]
- Kraus, M.; Grimm, C.; Seibel, J. Switching enzyme specificity from phosphate to resveratrol glucosylation. Chem. Commun. 2017, 53, 12181–12184. [Google Scholar] [CrossRef]
- Zhu, X.T.; Tian, Y.Q.; Zhang, W.L.; Zhang, T.; Guang, C.E.; Mu, W.M. Recent progress on biological production of α–arbutin. Appl. Microbiol. Biotechnol. 2018, 102, 8145–8152. [Google Scholar] [CrossRef]
- Gonzalez-Alfonso, J.L.; Ubiparip, Z.; Jimenez-Ortega, E.; Poveda, A.; Alonso, C.; Coderch, L.; Jimenez-Barbero, J.; Sanz-Aparicio, J.; Ballesteros, A.O.; Desmet, T.; et al. Enzymatic Synthesis of Phloretin α–Glucosides Using a Sucrose Phosphorylase Mutant and its Effect on Solubility, Antioxidant Properties and Skin Absorption. Adv. Synth. Catal. 2021, 363, 3079–3089. [Google Scholar] [CrossRef]
- Demonceaux, M.; Goux, M.; Hendrickx, J.; Solleux, C.; Cadet, F.; Lormeau, É.; Offmann, B.; André-Miral, C. Regioselective glucosylation of (+)– catechin using a new variant of sucrose phosphorylase from Bifidobacterium adolescentis. Org. Biomol. Chem. 2023, 21, 2307–2311. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.; Grimm, C.; Seibel, J. Redesign of the Active Site of Sucrose Phosphorylase through a Clash–Induced Cascade of Loop Shifts. Chembiochem 2016, 17, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Desmet, T.; Soetaert, W. Broadening the synthetic potential of disaccharide phosphorylases through enzyme engineering. Process Biochem. 2012, 47, 11–17. [Google Scholar] [CrossRef]
- Hepworth, L.J.; France, S.P.; Hussain, S.; Both, P.; Turner, N.J.; Flitsch, S.L. Enzyme Cascades in Whole Cells for the Synthesis of Chiral Cyclic Amines. ACS Catal. 2017, 7, 2920–2925. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, Y.H.; Kim, N.; Kim, Y.M.; Kang, H.K.; Jung, J.Y.; Abada, E.; Kang, S.S.; Kim, D. Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli. Biotechnol. Lett. 2008, 30, 749–754. [Google Scholar] [CrossRef]
- Sprogoe, D.; van den Broek, L.A.M.; Mirza, O.; Kastrup, J.S.; Voragen, A.G.J.; Gajhede, M.; Skov, L.K. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis. Biochemistry 2004, 43, 1156–1162. [Google Scholar] [CrossRef]
- Mirza, O.; Skov, L.K.; Sprogoe, D.; van den Broek, L.A.; Beldman, G.; Kastrup, J.S.; Gajhede, M. Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. J. Biol. Chem. 2006, 281, 35576–35584. [Google Scholar] [CrossRef]
- Franceus, J.; Desmet, T. Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering. Int. J. Mol. Sci. 2020, 21, 2526. [Google Scholar] [CrossRef]
- Mirza, O.; Skov, L.K.; Remaud–Simeon, M.; Potocki de Montalk, G.; Albenne, C.; Monsan, P.; Gajhede, M. Crystal structures of amylosucrase from Neisseria polysaccharea in complex with D–glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 2001, 40, 9032–9039. [Google Scholar] [CrossRef]
- Schwarz, A.; Nidetzky, B. Asp–196→Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate. FEBS Lett. 2006, 580, 3905–3910. [Google Scholar] [CrossRef]
- Wiesbauer, J.; Goedl, C.; Schwarz, A.; Brecker, L.; Nidetzky, B. Substitution of the catalytic acid–base Glu237 by Gln suppresses hydrolysis during glucosylation of phenolic acceptors catalyzed by Leuconostoc mesenteroides sucrose phosphorylase. J. Mol. Catal. B Enzym. 2010, 65, 24–29. [Google Scholar] [CrossRef]
- Rye, C.S.; Withers, S.G. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 2000, 4, 573–580. [Google Scholar] [CrossRef]
- Vyas, A.; Nidetzky, B. Energetics of the Glycosyl Transfer Reactions of Sucrose Phosphorylase. Biochemistry 2023, 62, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Wildberger, P.; Aish, G.A.; Jakeman, D.L.; Brecker, L.; Nidetzky, B. Interplay of catalytic subsite residues in the positioning of alpha–d–glucose 1–phosphate in sucrose phosphorylase. Biochem. Biophys. Rep. 2015, 2, 36–44. [Google Scholar] [PubMed]
- Wildberger, P.; Todea, A.; Nidetzky, B. Probing enzyme–substrate interactions at the catalytic subsite of Leuconostoc mesenteroides sucrose phosphorylase with site–directed mutagenesis: The roles of Asp49 and Arg395. Biocatal. Biotransform. 2012, 30, 326–337. [Google Scholar] [CrossRef]
- Cerdobbel, A.; Desmet, T.; De Winter, K.; Maertens, J.; Soetaert, W. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization. J. Biotechnol. 2010, 150, 125–130. [Google Scholar] [CrossRef]
- Cerdobbel, A.; De Winter, K.; Aerts, D.; Kuipers, R.; Joosten, H.J.; Soetaert, W.; Desmet, T. Increasing the thermostability of sucrose phosphorylase by a combination of sequence–and structure–based mutagenesis. Protein Eng. Des. Sel. 2011, 24, 829–834. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef]
- Xu, L.; Han, F.; Dong, Z.; Wei, Z. Engineering Improves Enzymatic Synthesis of L–Tryptophan by Tryptophan Synthase from Escherichia coli. Microorganisms 2020, 8, 519. [Google Scholar] [CrossRef]
- Liu, Q.; Xun, G.; Feng, Y. The state–of–the–art strategies of protein engineering for enzyme stabilization. Biotechnol. Adv. 2019, 37, 530–537. [Google Scholar] [CrossRef]
- Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, S.X.; Liu, Z.M.; Li, N.N.; Li, L.; Mou, H.J. Rational Design of Alginate Lyase from Microbulbife sp. Q7 to Improve Thermal Stability. Mar. Drugs 2019, 17, 378. [Google Scholar] [CrossRef] [PubMed]
- Cerdobbel, A.; De Winter, K.; Desmet, T.; Soetaert, W. Sucrose phosphorylase as cross–linked enzyme aggregate: Improved thermal stability for industrial applications. Biotechnol. J. 2010, 5, 1192–1197. [Google Scholar] [CrossRef]
- Aerts, D.; Verhaeghe, T.; Joosten, H.J.; Vriend, G.; Soetaert, W.; Desmet, T. Consensus engineering of sucrose phosphorylase: The outcome reflects the sequence input. Biotechnol. Bioeng. 2013, 110, 2563–2572. [Google Scholar] [CrossRef]
- Unsworth, L.D.; van der Oost, J.; Koutsopoulos, S. Hyperthermophilic enzymes–stability, activity and implementation strategies for high temperature applications. FEBS J. 2007, 274, 4044–4056. [Google Scholar] [CrossRef]
- Fujii, K.; Iiboshi, M.; Yanase, M.; Takaha, T.; Kuriki, T. Enhancing the Thermal Stability of Sucrose Phosphorylase from Streptococcus mutans by Random Mutagenesis. J. Appl. Glyosci. 2006, 53, 91–97. [Google Scholar] [CrossRef]
- Jochens, H.; Aerts, D.; Bornscheuer, U.T. Thermostabilization of an esterase by alignment–guided focussed directed evolution. Protein Eng. Des. Sel. 2010, 23, 903–909. [Google Scholar] [CrossRef]
- Xia, Y.; Li, X.; Yang, L.; Luo, X.; Shen, W.; Cao, Y.; Peplowski, L.; Chen, X. Development of thermostable sucrose phosphorylase by semi–rational design for efficient biosynthesis of alpha–D–glucosylglycerol. Appl. Microbiol. Biotechnol. 2021, 105, 7309–7319. [Google Scholar] [CrossRef]
- Yang, L.; Peplowski, L.; Shen, Y.; Yang, H.; Chen, X.; Shen, W.; Xia, Y. Enhancing thermostability and activity of sucrose phosphorylase for high–level production of 2–O–α–d–glucosylglycerol. Syst. Microbiol. Biomanufacturing 2022, 2, 643–652. [Google Scholar] [CrossRef]
- De Winter, K.; Cerdobbel, A.; Soetaert, W.; Desmet, T. Operational stability of immobilized sucrose phosphorylase: Continuous production of α–glucose–1–phosphate at elevated temperatures. Process Biochem. 2011, 46, 2074–2078. [Google Scholar] [CrossRef]
- Valikhani, D.; Bolivar, J.M.; Pfeiffer, M.; Nidetzky, B. Multivalency Effects on the Immobilization of Sucrose Phosphorylase in Flow Microchannels and Their Use in the Development of a High–Performance Biocatalytic Microreactor. ChemCatChem 2017, 9, 161–166. [Google Scholar] [CrossRef]
- De Winter, K.; Soetaert, W.; Desmet, T. An imprinted cross–linked enzyme aggregate (iCLEA) of sucrose phosphorylase: Combining improved stability with altered specificity. Int. J. Mol. Sci. 2012, 13, 11333–11342. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lan, Y.; Guo, J.; Ma, D.; Jiang, S.; Lai, Q.; Zhou, Z.; Peplowski, L. Computational Design of Nitrile Hydratase from Pseudonocardia thermophila JCM3095 for Improved Thermostability. Molecules 2020, 25, 4806. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.; Beer, B.; Pick, A.; Sieber, V. Thermostabilization of the uronate dehydrogenase from Agrobacterium tumefaciens by semi–rational design. AMB Express 2017, 7, 103. [Google Scholar] [CrossRef]
- Campeotto, I.; Goldenzweig, A.; Davey, J.; Barfod, L.; Marshall, J.M.; Silk, S.E.; Wright, K.E.; Draper, S.J.; Higgins, M.K.; Fleishman, S.J. One–step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proc. Natl. Acad. Sci. USA 2017, 114, 998–1002. [Google Scholar] [CrossRef]
- Musil, M.; Stourac, J.; Bendl, J.; Brezovsky, J.; Prokop, Z.; Zendulka, J.; Martinek, T.; Bednar, D.; Damborsky, J. FireProt: Web server for automated design of thermostable proteins. Nucleic Acids Res. 2017, 45, W393–W399. [Google Scholar] [CrossRef]
- Musil, M.; Jezik, A.; Horackova, J.; Borko, S.; Kabourek, P.; Damborsky, J.; Bednar, D. FireProt 2.0: Web–based platform for the fully automated design of thermostable proteins. Brief. Bioinform. 2023, 25, bbad425. [Google Scholar] [CrossRef]
- Weinstein, J.J.; Goldenzweig, A.; Hoch, S.; Fleishman, S.J. PROSS 2: A new server for the design of stable and highly expressed protein variants. Bioinformatics 2021, 37, 123–125. [Google Scholar] [CrossRef]
- Mateo, C.; Grazu, V.; Pessela, B.C.; Montes, T.; Palomo, J.M.; Torres, R.; Lopez-Gallego, F.; Fernandez-Lafuente, R.; Guisan, J.M. Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochem. Soc. Trans. 2007, 35 Pt 6, 1593–1601. [Google Scholar] [CrossRef]
- Ni, Z.F.; Li, N.; Xu, P.; Guo, Z.W.; Zong, M.H.; Lou, W.Y. Enhancement of thermostability and catalytic properties of ammonia lyase through disulfide bond construction and backbone cyclization. Int. J. Biol. Macromol. 2022, 219, 804–811. [Google Scholar] [CrossRef]
- Dou, Z.; Sun, Y.; Jiang, X.; Wu, X.; Li, Y.; Gong, B.; Wang, L. Data–driven strategies for the computational design of enzyme thermal stability: Trends, perspectives, and prospects. Acta Biochim. Biophys. Sin. 2023, 55, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Renirie, R.; Pukin, A.; van Lagen, B.; Franssen, M.C.R. Regio–and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1–phosphate as glucosyl donor. J. Mol. Catal. B Enzym. 2010, 67, 219–224. [Google Scholar] [CrossRef]
- Bartlett, G.J.; Porter, C.T.; Borkakoti, N.; Thornton, J.M. Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 2002, 324, 105–121. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker′ s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci. 2020, 11, 2587–2605. [Google Scholar] [CrossRef]
- Kraus, M.; Grimm, C.; Seibel, J. Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase. Sci. Rep. 2018, 8, 10490. [Google Scholar] [CrossRef] [PubMed]
- Febres-Molina, C.; Sanchez, L.; Prat-Resina, X.; Jana, G.A. Glucosylation mechanism of resveratrol through the mutant Q345F sucrose phosphorylase from the organism Bifidobacterium adolescentis: A computational study. Org. Biomol. Chem. 2022, 20, 5270–5283. [Google Scholar] [CrossRef]
- Franceus, J.; Dhaene, S.; Decadt, H.; Vandepitte, J.; Caroen, J.; Van der Eycken, J.; Beerens, K.; Desmet, T. Rational design of an improved transglucosylase for production of the rare sugar nigerose. Chem. Commun. 2019, 55, 4531–4533. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lv, X.; Chen, L.; Zhang, H.; Zhu, L.; Lu, Y.; Chen, X. Identification of Process–Related Impurities and Corresponding Control Strategy in Biocatalytic Production of 2–O–alpha–d–Glucopyranosyl–l–ascorbic Acid Using Sucrose Phosphorylase. J. Agric. Food Chem. 2022, 70, 5066–5076. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ke, F.; Chen, L.; Lu, Y.; Zhu, L.; Chen, X. Enhancing regioselectivity of sucrose phosphorylase by loop engineering for glycosylation of L–ascorbic acid. Appl. Microbiol. Biotechnol. 2022, 106, 4575–4586. [Google Scholar] [CrossRef]
- Dirks-Hofmeister, M.E.; Verhaeghe, T.; De Winter, K.; Desmet, T. Creating Space for Large Acceptors: Rational Biocatalyst Design for Resveratrol Glycosylation in an Aqueous System. Angew. Chem. Int. Ed. Engl. 2015, 54, 9289–9292. [Google Scholar] [CrossRef]
- Goux, M.; Demonceaux, M.; Hendrickx, J.; Solleux, C.; Lormeau, E.; Fredslund, F.; Teze, D.; Offmann, B.; Andre-Miral, C. Sucrose phosphorylase from Alteromonas mediterranea: Structural insight into the regioselective alpha–glucosylation of (+)–catechin. Biochimie 2024, 221, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Long, M.; Zhang, X.; Liu, Z.; You, J.; Pan, X.; Fu, W.; Xu, M.; Yang, T.; Shao, M.; et al. Efficient 2–O–alpha–D–glucopyranosyl–sn–glycerol production by single whole–cell biotransformation through combined engineering and expression regulation with novel sucrose phosphorylase from Leuconostoc mesenteroides ATCC 8293. Bioresour. Technol. 2023, 385, 129399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gan, T.; Jiang, R.; Chen, H.; Ma, Z.; Lu, Y.; Zhu, L.; Chen, X. Whole–cell catalytic synthesis of 2–O–α–glucopyranosyl–l–ascorbic acid by sucrose phosphorylase from Bifidobacterium breve via a batch–feeding strategy. Process Biochem. 2022, 112, 27–34. [Google Scholar] [CrossRef]
- Kruschitz, A.; Nidetzky, B. Removal of glycerol from enzymatically produced 2–α–d–glucosyl–glycerol by discontinuous. Sep. Purif. Technol. 2020, 241, 116749. [Google Scholar] [CrossRef]
- De Winter, K.; Verlinden, K.; Křen, V.; Weignerová, L.; Soetaert, W.; Desmet, T. Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: Balancing acceptor solubility and enzyme stability. Green Chem. 2013, 15, 1949–1955. [Google Scholar] [CrossRef]
- Gudiminchi, R.K.; Nidetzky, B. Walking a Fine Line with Sucrose Phosphorylase: Efficient Single–Step Biocatalytic Production of l–Ascorbic Acid 2–Glucoside from Sucrose. Chembiochem 2017, 18, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Cen, Y.K.; Zou, S.P.; Xue, Y.P.; Zheng, Y.G. Recent advances in the improvement of enzyme thermostability by structure modification. Crit. Rev. Biotechnol. 2020, 40, 83–98. [Google Scholar] [CrossRef]
- Kress, N.; Halder, J.M.; Rapp, L.R.; Hauer, B. Unlocked potential of dynamic elements in protein structures: Channels and loops. Curr. Opin. Chem. Biol. 2018, 47, 109–116. [Google Scholar] [CrossRef]
- Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering. ACS Catal. 2019, 10, 1210–1223. [Google Scholar] [CrossRef]
- Wittmann, B.J.; Yue, Y.; Arnold, F.H. Informed training set design enables efficient machine learning–assisted directed protein evolution. Cell Syst. 2021, 12, 1026–1045.e7. [Google Scholar] [CrossRef]
Domain | Amino Acid | Structure |
---|---|---|
A | 1–85, 167–291 and 356–435 | Consisting of 8 alternating parallel β–strands (e1–e8) and α–helices (h1–h8) (β/α) 8–barrels |
B | 86–166 | Two short antiparallel β–folding |
B′ | 292–355 | One long and one short α–helix |
C | The first 56 amino acid residues at the C–terminus | A single–chain, five–stranded antiparallel beta–sheet |
Sources | Engineering Modification | Results | Ref. |
---|---|---|---|
Bifidobacterium adolescentis | Multipoint covalent immobilization | The optimal temperature of the enzyme is increased from 58 to 65 °C | [36] |
Bifidobacterium adolescentis | Combination of sequence–and structure–based mutagenesis | The half–life at 60 °C increased dramatically from 24 to 62 h | [37] |
Bifidobacterium adolescentis | CLEAs | The optimal temperature is increased by 17 °C | [43] |
Streptococcus mutans | Random mutations | 60% activity remains at 60 °C for 20 min | [46] |
Bifidobacterium adolescentis | Alignment guided focused directed evolution | The library size could be significantly reduced while ensuring a high hit rate | [47] |
– – | – | ||
Leuconostoc mesenteroides | A semi–rational design strategy | The half– life has increased nearly two–fold | [48] |
Leuconostoc mesenteroides | PROSS | Achieved high–level production of αGG | [49] |
Bifidobacterium adolescentis | Sepabeads EC–HFA | The immobilized enzyme was able to retain 65% of its activity after 16 h incubation at 60 °C | [50] |
Leuconostoc mesenteroides | Microstructured reactors | After 690 reactor cycles, the enzyme retains about 70% activity | [51] |
Bifidobacterium adolescentis | iCLEA | Exhibiting altered acceptor specificity as well as excellent stability at 60 °C | [52] |
Sources Microorganism | Site | Results | Ref. |
---|---|---|---|
Bifidobacterium adolescentis | L341I–Q345S | The selectivity of kojibiose was 95%. | [4] |
Bifidobacterium adolescentis | Q345F | Produces a mixture of maltose and rare brown sugar. | [5] |
Bifidobacterium adolescentis | Q345F/P134D | Effectively increases the control of SPase on the selectivity of (+)– catechin glycosylated regions. | [21] |
Bifidobacterium adolescentis | Q345F | The glycosylation rate of aromatic receptors reached up to 97%. | [65] |
Bifidobacterium adolescentis | Q345F | Mutations can reversibly shift the structural domain of the active site. | [66] |
Bifidobacterium adolescentis | Q345F | Conformational changes in the active site of the mutant are greater than in the natural enzyme. | [67] |
Bifidobacterium adolescentis | R135Y–342G–Y344Q–Q345F | The catalytic efficiency (kcat/km) of the synthesis of brown sugar has been increased by 68 times. | [68] |
Bifidobacterium breve | L343F | Reduced impurities I and III by 63.9 and 100%, respectively, without affecting the transglycosylation activity. | [69] |
Bifidobacterium breve | L341V/L343F | L–AA conversion rate reaches 64%. | [70] |
Thermoanaerobacterium thermosaccharolyticum | R134A | The ability of binding to macromolecular receptors increased. | [71] |
Bacteria Mediterranean Alternaria | P140D | The pattern of preferential binding of (+)– catechin by AmSP–P140D favors glycosylation on the 4′(OH4′) hydroxyl group. | [72] |
Leuconostoc mesenteroides | K138C | The maximum production of αGG by these combined strategies reached 351.8 g·L−1 with a 98% conversion rate from 1.4 M sucrose and 3.5 M glycerol in a 5–L bioreactor. | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Zhang, H.; Lou, T.; Wang, S. Advancements in the Engineering Modification of Sucrose Phosphorylase. Crystals 2024, 14, 972. https://doi.org/10.3390/cryst14110972
Ma S, Zhang H, Lou T, Wang S. Advancements in the Engineering Modification of Sucrose Phosphorylase. Crystals. 2024; 14(11):972. https://doi.org/10.3390/cryst14110972
Chicago/Turabian StyleMa, Shuru, Hongyu Zhang, Tingting Lou, and Suying Wang. 2024. "Advancements in the Engineering Modification of Sucrose Phosphorylase" Crystals 14, no. 11: 972. https://doi.org/10.3390/cryst14110972
APA StyleMa, S., Zhang, H., Lou, T., & Wang, S. (2024). Advancements in the Engineering Modification of Sucrose Phosphorylase. Crystals, 14(11), 972. https://doi.org/10.3390/cryst14110972