On the Peculiarities of Wire-Feed Electron Beam Additive Manufacturing (WEBAM) of Nickel Alloy–Copper Bimetal Nozzle Samples
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Macrostructure
3.2. Microstructure
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Sugavaneswaran, M.; Arumaikkannu, G. Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Mater. Des. 2014, 54, 779–785. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, X.; Watanabe, I. A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Mater. Des. 2021, 198, 109313. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Wang, Z.; Palmer, T.A.; Beese, A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater. 2016, 110, 226–235. [Google Scholar] [CrossRef]
- Mehnen, J.; Ding, J.; Lockett, H.; Kazanas, P. Design study for wire and arc additive manufacture. Int. J. Prod. Dev. 2014, 19, 2–20. [Google Scholar] [CrossRef]
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + arc additive manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef]
- Li, J.L.Z.; Alkahari, M.R.; Rosli, N.A.B.; Hasan, R.; Sudin, M.N.; Ramli, F.R. Review of wire arc additive manufacturing for 3d metal printing. Int. J. Autom. Technol. 2019, 13, 346–353. [Google Scholar] [CrossRef]
- Gu, D.; Shi, X.; Poprawe, R.; Bourell, D.L.; Setchi, R.; Zhu, J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 80, 372. [Google Scholar] [CrossRef]
- Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J. Welding with high power fiber lasers—A preliminary study. Mater. Des. 2007, 28, 1231–1237. [Google Scholar] [CrossRef]
- Campagnoli, M.R.; Galati, M.; Saboori, A. On the processability of copper components via powder-based additive manufacturing processes: Potentials, challenges and feasible solutions. J. Manuf. Process. 2021, 72, 320–337. [Google Scholar] [CrossRef]
- Jadhav, S.D.; Dadbakhsh, S.; Goossens, L.; Kruth, J.-P.; Van Humbeeck, J.; Vanmeensel, K. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process Technol. 2019, 270, 47–58. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, S.; Zhao, Y.; Qu, X. Microstructure and properties of CuCr alloy manufactured by selective laser melting. J. Alloys Compd. 2019, 786, 189–197. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Gao, J.; Kolbe, M. Microstructure of rapidly solidified Cu–25wt.% Cr alloys. Mater. Sci. Eng. A 2005, 398, 318–322. [Google Scholar] [CrossRef]
- Hauf, U.; Kauffmann, A.; Kauffmann-Weiss, S.; Feilbach, A.; Boening, M.; Mueller, F.E.; Hinrichsen, V.; Heilmaier, M. Microstructure formation and resistivity change in CuCr during rapid solidification. Metals 2017, 7, 478. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.; Yang, H.; Peng, D.; Wang, Y.; Zhu, H. Investigating the influence of the scanning rotation angle on the microstructure and properties of LPBFed CuCr0.8 alloy. J. Manuf. Process. 2022, 84, 1150–1161. [Google Scholar] [CrossRef]
- Onuike, B.; Heer, B.; Bandyopadhyay, A. Additive manufacturing of Inconel 718—Copper alloy bimetallic structure using laser engineered net shaping (LENSTM). Addit. Manuf. 2018, 21, 133–140. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, X.; Yamazaki, T.; Sutton, A.; Cui, W.; Li, L.; Liou, F. Characteristics of Inconel 625—Copper bimetallic structure fabricated by directed energy deposition. Int. J. Adv. Manuf. Technol. 2020, 109, 1261–1274. [Google Scholar] [CrossRef]
- Velu, M.; Bhat, S. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials. Mater. Des. 2013, 47, 793–809. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Tu, Y.; Xi, M.-Z.; Shi, L.-K. Characterization on laser clad nickel based alloy coating on pure copper. Surf. Coat. Technol. 2008, 202, 5924–5928. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, G.-H.; Kim, B.-K.; Kim, K.T.; Yang, D.-Y.; Aranas, C.; Choi, J.-P.; Yu, J.-H. Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion. Sci. Rep. 2017, 7, 14359. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; Chen, C.; Zhu, Y.; Liu, N.; Zhou, Y.; Chen, S. High catalytic performance non-enzymatic H2O2 sensor based on Cu2O@Cu9S5 yolk-shell nanospheres. Appl. Surf. Sci. 2022, 587, 152766. [Google Scholar] [CrossRef]
- Cao, W.; Guo, T.; Wang, J.; Xu, G.; Jiang, J.; Liu, D. Cu-based materials: Design strategies (hollow, core-shell, and LDH), sensing performance optimization, and applications in small molecule detection. Coord. Chem. Rev. 2023, 497, 215450. [Google Scholar] [CrossRef]
- Billah, K.M.M.; Coronel, J.L., Jr.; Chavez, L.; Lin, Y.; Espalin, D. Additive manufacturing of multimaterial and multifunctional structures via ultrasonic embedding of continuous carbon fiber. Compos. Part C Open Access 2021, 5, 100149. [Google Scholar] [CrossRef]
- Ng, K.; Man, H.C.; Cheng, F.; Yue, T.M. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts. Appl. Surf. Sci. 2007, 253, 6236–6241. [Google Scholar] [CrossRef]
- Majumdar, J.D.; Manna, I. Laser surface alloying of copper with chromium: I. microstructural evolution. Mater. Sci. Eng. A 1999, 268, 216–226. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C.; Tao, X.; Chen, S. Laser cladding of Ni-based alloy on copper substrate. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2006, 13, 329–332. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Martukanitz, R.; Michaleris, P.; Palmer, T.; DebRoy, T.; Liu, Z.-K.; Otis, R.; Heo, T.W.; Chen, L.-Q. Toward an integrated computational system for describing the additive manufacturing process for metallic materials. Addit. Manuf. 2014, 1, 52–63. [Google Scholar] [CrossRef]
- Kushnarev, Y.V.; Semenchuk, V.M.; Chumaevskii, A.V.; Osipovich, K.S.; Rubtsov, V.E.; Kolubaev, E.A. Production of experimental samples of nickel-based alloy and copper nozzles by electron beam additive manufacturing. Russ. Phys. J. 2024, 67, 419–426. [Google Scholar] [CrossRef]
- Tarasov, S.Y.; Filippov, A.V.; Savchenko, N.L.; Fortuna, S.V.; Rubtsov, V.E.; Kolubaev, E.A.; Psakhie, S.G. Effect of heat input on phase content crystalline lattice parameter residual strain in wire-feed electron beam additive manufactured 304 stainless steel. Int. J. Adv. Manuf. Technol. 2018, 99, 2353–2363. [Google Scholar] [CrossRef]
- Osipovich, K.S.; Chumaevskii, A.V.; Gusarova, A.V.; Kalashnikov, K.N.; Kolubaev, E.A. Mechanical Properties of Steel– Copper Polymetal Manufactured by the Wire-Feed Electron-Beam Additive Technology. High Temp. Mater. Process. 2020, 24, 91–98. [Google Scholar] [CrossRef]
- Utyaganova, V.; Filippov, A.; Tarasov, S.; Shamarin, N.; Gurianov, D.; Vorontsov, A.; Chumaevskii, A.; Fortuna, S.; Savchenko, N.; Rubtsov, V.; et al. Characterization of AA7075/AA5356 gradient transition zone in an electron beam wire-feed additive manufactured sample. Mater. Charact. 2021, 172, 110867. [Google Scholar] [CrossRef]
- Stavroulakis, P.; Toulfatzis, A.; Vazdirvanidis, A.; Pantazopoulos, G.S. Papaefthymiou Mechanical behaviour and microstructure of heat-treated Cu–Ni–Si alloy. Mater. Sci. Technol. 2020, 36, 939–948. [Google Scholar] [CrossRef]
- Yin, J.; Yang, L.; Yang, X.; Zhu, H.; Wang, D.; Ke, L.; Wang, Z.; Wang, G.; Zeng, X. High-power laser-matter interaction during laser powder bed fusion. Addit. Manuf. 2019, 29, 100778. [Google Scholar] [CrossRef]
- Hebert, R.J. Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing. J. Mater. Sci. 2016, 51, 1165–1175. [Google Scholar] [CrossRef]
- Song, B.; Zhao, X.; Li, S.; Han, C.; Wei, Q.; Wen, S.; Liu, J.; Shi, Y. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Front. Mech. Eng. 2015, 10, 111–125. [Google Scholar] [CrossRef]
- Wu, A.S.; Brown, D.W.; Kumar, M.; Gallegos, G.F.; King, W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A 2014, 45, 6260–6270. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zuback, J.S.; De, A.; DebRoy, T. Printability of alloys for additive manufacturing. Sci. Rep. 2016, 6, 19717. [Google Scholar] [CrossRef]
- Puebla, K.; Murr, L.E.; Gaytan, S.M.; Martinez, E.; Medina, F.; Wicker, R.B. Effect of Melt Scan Rate on Microstructure and Macrostructure for Electron Beam Melting of Ti-6Al-4V. Mater. Sci. Appl. 2012, 3, 259–264. [Google Scholar] [CrossRef]
- Kainuma, R.; Liu, X.J.; Ohnuma, I.; Hao, S.M.; Ishida, K. Miscibility gap of B2 phase in NiAl to Cu3Al section of the Cu–Al–Ni system. Intermetallics 2005, 13, 655–661. [Google Scholar] [CrossRef]
Parameters | Beam Sweep | Liner Speed, mm/min | I, A (1st Layer) | I, A (last Layer) | |
---|---|---|---|---|---|
Mode I | C11000 | Spiral | 400 | 80 | 60 |
Inconel 625 | Ellipse | 300 | 70 | 50 | |
Mode II | C11000 | Spiral | 400 | 68 | 67 |
Inconel 625 | Ellipse | 300 | 70 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipovich, K.; Semenchuk, V.; Chumaevskii, A.; Gurianov, D.; Korsunsky, A.M.; Rubtsov, V.; Kolubaev, E. On the Peculiarities of Wire-Feed Electron Beam Additive Manufacturing (WEBAM) of Nickel Alloy–Copper Bimetal Nozzle Samples. Crystals 2024, 14, 976. https://doi.org/10.3390/cryst14110976
Osipovich K, Semenchuk V, Chumaevskii A, Gurianov D, Korsunsky AM, Rubtsov V, Kolubaev E. On the Peculiarities of Wire-Feed Electron Beam Additive Manufacturing (WEBAM) of Nickel Alloy–Copper Bimetal Nozzle Samples. Crystals. 2024; 14(11):976. https://doi.org/10.3390/cryst14110976
Chicago/Turabian StyleOsipovich, Kseniya, Vyacheslav Semenchuk, Andrey Chumaevskii, Denis Gurianov, Alexander M. Korsunsky, Valery Rubtsov, and Evgeny Kolubaev. 2024. "On the Peculiarities of Wire-Feed Electron Beam Additive Manufacturing (WEBAM) of Nickel Alloy–Copper Bimetal Nozzle Samples" Crystals 14, no. 11: 976. https://doi.org/10.3390/cryst14110976
APA StyleOsipovich, K., Semenchuk, V., Chumaevskii, A., Gurianov, D., Korsunsky, A. M., Rubtsov, V., & Kolubaev, E. (2024). On the Peculiarities of Wire-Feed Electron Beam Additive Manufacturing (WEBAM) of Nickel Alloy–Copper Bimetal Nozzle Samples. Crystals, 14(11), 976. https://doi.org/10.3390/cryst14110976