Atmosphere-Controlled Solvatomorphic Transitions of Ternary Copper(II) Coordination Compounds in Solid State
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Procedures
2.1.1. Solution-Based Syntheses
2.1.2. Mechanochemical Syntheses
2.2. Solvent Exchange Experiments
2.3. Single-Crystal X-Ray Diffraction
2.3.1. Data Collection and Refinement
2.3.2. Crystal Structure Data
2.4. Antiproliferation Assays
3. Results
3.1. Syntheses and Crystallizations
3.2. Solvent Exchange in Solid State
3.2.1. Transformations 1a·6H2O⇄1a-α, 1a·6H2O→1a-β and 1a-α→1a-β
3.2.2. Transformation 1b·3CH3OH→1a-α
3.3. Thermogravimetric Analysis (TGA) and Infrared Spectroscopy (IR)
3.4. Crystal Structures
3.4.1. Hirshfeld Surface Analysis
3.4.2. Molecular Movements During 1a·6H2O⇄1a-α and 1b·3CH3OH→1a-α Transformations in Solid State
3.5. Proliferation Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patra, A.K.; Roy, S.; Chakravarty, A.R. Synthesis, Crystal Structures, DNA Binding and Cleavage Activity of L-Glutamine Copper(II) Complexes of Heterocyclic Bases. Inorganica Chim. Acta 2009, 362, 1591–1599. [Google Scholar] [CrossRef]
- Chetana, P.R.; Rao, R.; Roy, M.; Patra, A.K. New Ternary Copper(II) Complexes of L-Alanine and Heterocyclic Bases: DNA Binding and Oxidative DNA Cleavage Activity. Inorganica Chim. Acta 2009, 362, 4692–4698. [Google Scholar] [CrossRef]
- Ruiz-Azuara, L.; Bravo-Gomez, M.E. Copper Compounds in Cancer Chemotherapy. Curr. Med. Chem. 2010, 17, 3606–3615. [Google Scholar] [CrossRef]
- García-Ramos, J.C.; Galindo-Murillo, R.; Tovar-Tovar, A.; Alonso-Saenz, A.L.; Gómez-Vidales, V.; Flores-Álamo, M.; Ortiz-Frade, L.; Cortes-Guzmán, F.; Moreno-Esparza, R.; Campero, A.; et al. The Π-Back-Bonding Modulation and Its Impact in the Electronic Properties of CuII Antineoplastic Compounds: An Experimental and Theoretical Study. Chem.—A Eur. J. 2014, 20, 13730–13741. [Google Scholar] [CrossRef]
- Patra, A.K.; Dhar, S.; Nethaji, M.; Chakravarty, A.R. Metal-Assisted Red Light-Induced DNA Cleavage by Ternary L-Methionine Copper(Ii) Complexes of Planar Heterocyclic Bases. Dalton Trans. 2005, 896–902. [Google Scholar] [CrossRef]
- Espinoza Guillén, A.; García Conde, D.; García Conde, F.; Fuentes Noriega, I.; Ruiz-Azuara, L. Casiopeina Parenteral Composition and Uses of the Same. Mexican Patent MX2017016444A, 17 June 2019. [Google Scholar]
- Erxleben, A. Interactions of Copper Complexes with Nucleic Acids. Coord. Chem. Rev. 2018, 360, 92–121. [Google Scholar] [CrossRef]
- Valencia-Cruz, A.I.; Uribe-Figueroa, L.I.; Galindo-Murillo, R.; Baca-López, K.; Gutiérrez, A.G.; Vázquez-Aguirre, A.; Ruiz-Azuara, L.; Hernández-Lemus, E.; Mejía, C. Whole Genome Gene Expression Analysis Reveals Casiopeína-Induced Apoptosis Pathways. PLoS ONE 2013, 8, e54664. [Google Scholar] [CrossRef]
- Gutiérrez, A.G.; Vázquez-Aguirre, A.; García-Ramos, J.C.; Flores-Alamo, M.; Hernández-Lemus, E.; Ruiz-Azuara, L.; Mejía, C. Copper(II) Mixed Chelate Compounds Induce Apoptosis through Reactive Oxygen Species in Neuroblastoma Cell Line CHP-212. J. Inorg. Biochem. 2013, 126, 17–25. [Google Scholar] [CrossRef]
- Becco, L.; García-Ramos, J.C.; Azuara, L.R.; Gambino, D.; Garat, B. Analysis of the DNA Interaction of Copper Compounds Belonging to the Casiopeínas® Antitumoral Series. Biol. Trace Elem. Res. 2014, 161, 210–215. [Google Scholar] [CrossRef]
- Aguilar-Jiménez, Z.; Espinoza-Guillén, A.; Resendiz-Acevedo, K.; Fuentes-Noriega, I.; Mejía, C.; Ruiz-Azuara, L. The Importance of Being Casiopeina as Polypharmacologycal Profile (Mixed Chelate–Copper(II) Complexes and Their In Vitro and In Vivo Activities). Inorganics 2023, 11, 394. [Google Scholar] [CrossRef]
- Bravo-Gómez, M.E.; García-Ramos, J.C.; Gracia-Mora, I.; Ruiz-Azuara, L. Antiproliferative Activity and QSAR Study of Copper(II) Mixed Chelate [Cu(N–N)(Acetylacetonato)]NO3 and [Cu(N–N)(Glycinato)]NO3 Complexes, (Casiopeínas®). J. Inorg. Biochem. 2009, 103, 299–309. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef]
- Friščić, T.; Childs, S.L.; Rizvi, S.A.A.; Jones, W. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallisation Outcome. CrystEngComm 2009, 11, 418–426. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Li, S.; Liu, H.; Yan, K. Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry. Chem.—A Eur. J. 2023, 29, e202302563. [Google Scholar] [CrossRef]
- Friščić, T.; Mottillo, C.; Titi, H.M. Mechanochemistry for Synthesis. Angew. Chem. Int. Ed. 2020, 59, 1030–1041. [Google Scholar] [CrossRef]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef]
- Užarević, K.; Štrukil, V.; Mottillo, C.; Julien, P.A.; Puškarić, A.; Friščić, T.; Halasz, I. Exploring the Effect of Temperature on a Mechanochemical Reaction by in Situ Synchrotron Powder X-Ray Diffraction. Cryst. Growth Des. 2016, 16, 2342–2347. [Google Scholar] [CrossRef]
- Thebo, K.H.; Shad, H.A.; Thebo, A.A.; Raftery, J. Synthesis and Structural Characterization of Copper(II) Complex of 2,2′-Bipyridyl and L-Lysine. Crystallogr. Rep. 2014, 59, 1063–1067. [Google Scholar] [CrossRef]
- Solans, X.; Ruíz-Ramírez, L.; Martínez, A.; Gasque, L.; Moreno-Esparza, R. Mixed Chelate Complexes. III. Structures of (L-Alaninato)(Aqua)(2,2′-Bipyridine)Copper(II) Nitrate Monohydrate and Aqua(2,2′-Bipyridine)(L-Tyrosinato)Copper(II) Chloride Trihydrate. Acta Crystallogr. C 1992, 48, 1785–1788. [Google Scholar] [CrossRef]
- Zhang, W.C.; Lu, X. Long-Lived Photoluminescence and High Quantum Yield of Copper(II) Complexes with Novel Nanostructures. RSC Adv. 2015, 5, 101155–101161. [Google Scholar] [CrossRef]
- Braban, M.; Haiduc, I.; Lönnecke, P. Catena-Poly[[[(2,2′-Bipyridyl)Copper(II)]-μ-L-Alaninato] Perchlorate Monohydrate]. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, m51. [Google Scholar] [CrossRef]
- Subramanian, P.S.; Suresh, E.; Casella, L. Supramolecular Helical Architectures Dictated by Folded and Extended Conformations of the Amino Acid in Ternary CuII /Diamine/Racemic Amino Acid Complexes. Eur. J. Inorg. Chem. 2007, 2007, 1654–1660. [Google Scholar] [CrossRef]
- Hua Zhou, X.; Yi Le, X.; Chen, S. Synthesis, Crystal Structure and Properties of a One-Dimensional L-Valinate Bridged Coordination Polymer: [Cu2(L-Val)2(Bpy)2]N·2nClO4·2nH2O. J. Coord. Chem. 2005, 58, 993–1001. [Google Scholar] [CrossRef]
- Vušak, D.; Prugovečki, B.; Milić, D.; Marković, M.; Petković, I.; Kralj, M.; Matković-Čalogović, D. Synthesis and Crystal Structure of Solvated Complexes of Copper(II) with Serine and Phenanthroline and Their Solid-State-to-Solid-State Transformation into One Stable Solvate. Cryst. Growth Des. 2017, 17, 6049–6061. [Google Scholar] [CrossRef]
- Perez Barrio, J.; Rebilly, J.; Carter, B.; Bradshaw, D.; Bacsa, J.; Ganin, A.Y.; Park, H.; Trewin, A.; Vaidhyanathan, R.; Cooper, A.I.; et al. Control of Porosity Geometry in Amino Acid Derived Nanoporous Materials. Chem.—A Eur. J. 2008, 14, 4521–4532. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Luan, B.; Wang, L.; Yang, W.; Jiang, Y.; Ben, T.; He, Y.; Chen, B. Metal–Organic Framework with Space-Partition Pores by Fluorinated Anions for Benchmark C2H2/CO2 Separation. J. Am. Chem. Soc. 2024, 146, 17220–17229. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, Y.; Luan, B.; Wang, L.; Krishna, R.; Ni, H.; Hu, X.; Zhang, Y. Benchmark Single-Step Ethylene Purification from Ternary Mixtures by a Customized Fluorinated Anion-Embedded MOF. Nat. Commun. 2023, 14, 401. [Google Scholar] [CrossRef]
- Alawadhi, A.H.; Chheda, S.; Stroscio, G.D.; Rong, Z.; Kurandina, D.; Nguyen, H.L.; Rampal, N.; Zheng, Z.; Gagliardi, L.; Yaghi, O.M. Harvesting Water from Air with High-Capacity, Stable Furan-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2024, 146, 2160–2166. [Google Scholar] [CrossRef]
- Song, W.; Zheng, Z.; Alawadhi, A.H.; Yaghi, O.M. MOF Water Harvester Produces Water from Death Valley Desert Air in Ambient Sunlight. Nat. Water 2023, 1, 626–634. [Google Scholar] [CrossRef]
- Haldar, R.; Kumar, A.; Mandal, D.; Shanmugam, M. Deciphering the Anisotropic Energy Harvesting Responses of an above Room Temperature Molecular Ferroelectric Copper(II) Complex Single Crystal. Mater. Horiz. 2024, 11, 454–459. [Google Scholar] [CrossRef]
- Yamada, M.; Shen, Z.; Miyake, M. Self-Assembly of Discotic Liquid Crystalline Molecule-Modified Gold Nanoparticles: Control of 1D and Hexagonal Ordering Induced by Solvent Polarity. Chem. Commun. 2006, 2569–2571. [Google Scholar] [CrossRef]
- Wang, W.; Su, K.; El-Sayed, E.-S.M.; Yang, M.; Yuan, D. Solvatomorphism Influence of Porous Organic Cage on C2H2/CO2 Separation. ACS Appl. Mater. Interfaces 2021, 13, 24042–24050. [Google Scholar] [CrossRef] [PubMed]
- Chimatahalli Shanthakumar, K.; Sridhara, P.G.; Rajabathar, J.R.; Al-lohedan, H.A.; Lokanath, N.K.; Mylnahalli Krishnegowda, H. Unveiling a Novel Solvatomorphism of Anti-Inflammatory Flufenamic Acid: X-Ray Structure, Quantum Chemical, and In Silico Studies. ACS Omega 2024, 9, 20753–20772. [Google Scholar] [CrossRef]
- Grell, T.; Barbero, M.; Pattarino, F.; Giovenzana, G.B.; Colombo, V. Solvatomorphism of Moxidectin. Molecules 2021, 26, 4869. [Google Scholar] [CrossRef]
- Bhatia, A.; Chopra, S.; Nagpal, K.; Deb, P.K.; Tekade, M.; Tekade, R.K. Polymorphism and Its Implications in Pharmaceutical Product Development. In Dosage Form Design Parameters; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–65. [Google Scholar]
- Ardila-Fierro, K.J.; Hernández, J.G. Intermediates in Mechanochemical Reactions. Angew. Chem. Int. Ed. 2024, 63, e202317638. [Google Scholar] [CrossRef]
- Firaha, D.; Liu, Y.M.; van de Streek, J.; Sasikumar, K.; Dietrich, H.; Helfferich, J.; Aerts, L.; Braun, D.E.; Broo, A.; DiPasquale, A.G.; et al. Predicting Crystal Form Stability under Real-World Conditions. Nature 2023, 623, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Vušak, D.; Mišković Špoljarić, K.; Jurec, J.; Žilić, D.; Prugovečki, B. Ternary Coordination Compounds of Copper(II) with Glycine and 2,2′-Bipyridine: Synthesis, Structural Characterization, Magnetic and Biological Properties. Croat. Chem. Acta 2023, 95, 157–165. [Google Scholar] [CrossRef]
- Vušak, D.; Ležaić, K.; Judaš, N.; Prugovečki, B. Ternary Copper(II) Coordination Compounds with Nonpolar Amino Acids and 2,2′-Bipyridine: Monomers vs. Polymers. Crystals 2024, 14, 656. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- DataViewer; Version 1.9a; PANalytical B.V.: Almelo, The Netherlands, 2018.
- Wojciechowska, A.; Jezierska, J.; Bieńko, A.; Daszkiewicz, M. Structural and Spectroscopic Parameters of Distortion in [Cu(Bpy)2(O2SO2)]·CH3OH and [Cu(Bpy)3][SO4]·7.5H2O—Synthesis, Crystal Structure, Spectroscopic and Magnetic Properties. Polyhedron 2011, 30, 1547–1554. [Google Scholar] [CrossRef]
- Fitzgerald, W.; Foley, J.; McSweeney, D.; Ray, N.; Sheahan, D.; Tyagi, S.; Hathaway, B.; O’Brien, P. Electronic Properties and Crystal Structure of (2,2′-Bipyridyl)-Catena-µ-(Oxalato-O1O2:O1′O2′)-Copper(II) Dihydrate and Aqua(2,2′-Bipyridyl)-(Oxalato-O1O2)Copper(II) Dihydrate. J. Chem. Soc. Dalton Trans. 1982, 1117–1121. [Google Scholar] [CrossRef]
- Castro, I.; Faus, J.; Julve, M.; Muñoz, M.C.; Diaz, W.; Solans, X. Study of the Interaction between [Cu(Bipy)]2+ and Oxalate in Dimethyl Sulfoxide. Crystal Structure of [Cu2(Bipy)2(H2O)2ox]SO4·[Cu(Bipy)Ox]. Inorganica Chim. Acta 1991, 179, 59–66. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity Fixed Points of Binary Saturated Aqueous Solutions. J. Res. Natl. Bur. Stand. A Phys. Chem. 1977, 81A, 89. [Google Scholar] [CrossRef]
- CrysAlisPRO; Version 171.42.63a; Rigaku Oxford Diffraction: Yarnton, UK, 2022.
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Spek, A.L. Single-Crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Perin, N.; Nhili, R.; Cindrić, M.; Bertoša, B.; Vušak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.-H.; et al. Amino Substituted Benzimidazo[1,2-a]Quinolines: Antiproliferative Potency, 3D QSAR Study and DNA Binding Properties. Eur. J. Med. Chem. 2016, 122, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Pršir, K.; Horak, E.; Kralj, M.; Uzelac, L.; Liekens, S.; Steinberg, I.M.; Krištafor, S. Design, Synthesis, Spectroscopic Characterisation and In Vitro Cytostatic Evaluation of Novel Bis(Coumarin-1,2,3-Triazolyl)Benzenes and Hybrid Coumarin-1,2,3-Triazolyl-Aryl Derivatives. Molecules 2022, 27, 637. [Google Scholar] [CrossRef] [PubMed]
- Gonnet, L.; Borchers, T.H.; Lennox, C.B.; Vainauskas, J.; Teoh, Y.; Titi, H.M.; Barrett, C.J.; Koenig, S.G.; Nagapudi, K.; Friščić, T. The “η-Sweet-Spot” (H_max) in Liquid-Assisted Mechanochemistry: Polymorph Control and the Role of a Liquid Additive as Either a Catalyst or an Inhibitor in Resonant Acoustic Mixing (RAM). Faraday Discuss. 2023, 241, 128–149. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780471744931. [Google Scholar]
Compound | IC50a/10−6 mol dm−3 | ||
---|---|---|---|
Cell Lines | |||
HCT116 | MCF-7 | H 460 | |
1a-α | 10 ± 1 | 18 ± 3 | 14 ± 2 |
[Cu(l-ser)(H2O)(phen)]2SO4∙6H2O | - b | 2 ± 0.08 c | 2 ± 0.2 c |
etoposide | 5 ± 2 d,e | 1 ± 0.7 d,e | 0.1 ± 0.04 d,e |
5-fluorouracil | 4 ± 1 e | 14 ± 0.3 e | 3 ± 0.3e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vušak, D.; Primožić, M.; Prugovečki, B. Atmosphere-Controlled Solvatomorphic Transitions of Ternary Copper(II) Coordination Compounds in Solid State. Crystals 2024, 14, 986. https://doi.org/10.3390/cryst14110986
Vušak D, Primožić M, Prugovečki B. Atmosphere-Controlled Solvatomorphic Transitions of Ternary Copper(II) Coordination Compounds in Solid State. Crystals. 2024; 14(11):986. https://doi.org/10.3390/cryst14110986
Chicago/Turabian StyleVušak, Darko, Matea Primožić, and Biserka Prugovečki. 2024. "Atmosphere-Controlled Solvatomorphic Transitions of Ternary Copper(II) Coordination Compounds in Solid State" Crystals 14, no. 11: 986. https://doi.org/10.3390/cryst14110986
APA StyleVušak, D., Primožić, M., & Prugovečki, B. (2024). Atmosphere-Controlled Solvatomorphic Transitions of Ternary Copper(II) Coordination Compounds in Solid State. Crystals, 14(11), 986. https://doi.org/10.3390/cryst14110986