Mechanical, Tribological, and Corrosion Resistance Properties of (TiAlxCrNbY)Ny High-Entropy Coatings Synthesized Through Hybrid Reactive Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Influence of Al Concentration
3.1.1. Microstructural Characteristics of TiAlxCrNbY/C45 (0.12 ≤ x ≤ 1) Coatings
3.1.2. Mechanical and Tribological Properties of TiAlxCrNbY (0.12 ≤ x ≤ 1)
3.2. Influence of Nitrogen Concentration
3.2.1. Microstructural Characteristics of (TiAl0.5CrNbY)Nx/C45 (0 ≤ x ≤ 0.85) Coatings
3.2.2. Mechanical and Tribological Properties of (TiAl0.5CrNbY)Ny/C45 (0 ≤ y ≤ 0.85)
3.2.3. Electrochemical Evaluation of (TiAl0.5CrNbY)Nx (0 ≤ x = 0.42)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Sathiyamoorthi, P.; Kim, H.S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog. Mater. Sci. 2022, 123, 100709. [Google Scholar] [CrossRef]
- Jia, B.; Wan, Q.; Yan, L.; Luo, Y.; Wei, Q.; Niu, C.; Yang, B.; Li, S.; Meng, L. Tribological properties and machine learning prediction of FeCoCrNiAlN high entropy coatings. Surf. Coat. Technol. 2024, 477, 130341. [Google Scholar] [CrossRef]
- Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406. [Google Scholar]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Singh, S.; Wanderka, N.; Murty, B.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Wang, C.-W.; Tsai, C.-W.; Shen, W.-J.; Yeh, J.-W.; Gan, J.-Y.; Wu, W.-W. Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J. Electrochem. Soc. 2011, 158, H1161–H1165. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W.; Gan, J.-Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 2008, 516, 5527–5530. [Google Scholar] [CrossRef]
- Ng, C.; Guo, S.; Luan, J.; Shi, S.; Liu, C. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics 2012, 31, 165–172. [Google Scholar] [CrossRef]
- Tong, C.-J.; Chen, Y.-L.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Shun, T.-T.; Hung, C.-H.; Lee, C.-F. Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J. Alloys Compd. 2010, 493, 105–109. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yuan, H.; Cheng, G.; Xu, W.; Tsai, K.-Y.; Tsai, C.-W.; Jian, W.W.; Juan, C.-C.; Shen, W.-J.; Chuang, M.-H.; et al. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 2013, 32, 329–336. [Google Scholar] [CrossRef]
- Kumar, J.; Linda, A.; Biswas, K. Lattice distortion in FCC HEAs and its effect on mechanical properties: Critical analysis and way forward. J. Appl. Phys. 2023, 133, 155102. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Q.; Li, J.; Liu, B.; Liu, Y. Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. J. Mater. Sci. Technol. 2018, 34, 349–354. [Google Scholar] [CrossRef]
- Mu, S.; Wimmer, S.; Mankovsky, S.; Ebert, H.; Stocks, G. Influence of local lattice distortions on electrical transport of refractory high entropy alloys. Scr. Mater. 2019, 170, 189–194. [Google Scholar] [CrossRef]
- Adamo, C.G.; Srivastava, A.; Legese, S.S.; Kawamura, Y.; Serbesa, A.T.; Raman, S.P.; Olu, F.E.; Tiwary, C.S.; Singh, A.K.; Chattopadhyay, K. Thermoelectric Transport of a Novel Zr-Based Half-Heusler High-Entropy Alloy. Energy Technol. 2024, 12, 2301119. [Google Scholar] [CrossRef]
- Cheng, B.; Lou, H.; Sarkar, A.; Zeng, Z.; Zhang, F.; Chen, X.; Tan, L.; Prakapenka, V.; Greenberg, E.; Wen, J.; et al. Pressure-induced tuning of lattice distortion in a high-entropy oxide. Commun. Chem. 2019, 2, 114. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Lin, S.-J.; Chin, T.-S.; Gan, J.-Y.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chou, S.-Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Met. Mater. Trans. A 2004, 35, 2533–2536. [Google Scholar] [CrossRef]
- Cao, B.; Wang, C.; Yang, T.; Liu, C. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scr. Mater. 2020, 187, 250–255. [Google Scholar] [CrossRef]
- Zhu, S.; Du, W.B.; Wang, X.M.; Han, G.F. High mixing entropy alloys design with high anticorrosion and wear-resistance properties. Adv. Mater. Res. 2013, 815, 19–24. [Google Scholar] [CrossRef]
- Chang, C.-C.; Hsiao, Y.-T.; Chen, Y.-L.; Tsai, C.-Y.; Lee, Y.-J.; Ko, P.-H.; Chang, S.-Y. Lattice distortion or cocktail effect dominates the performance of Tantalum-based high-entropy nitride coatings. Appl. Surf. Sci. 2022, 577, 151894. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Y.; Yu, X.; Wang, C.; Wu, C.; Zou, Z. Understanding the enhanced catalytic activity of high entropy alloys: From theory to experiment. J. Mater. Chem. A 2021, 9, 19410–19438. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, L.; Huang, Y.; Kong, X.Y.; Ye, L. High-entropy catalysts: New opportunities toward excellent catalytic activities. Mater. Chem. Front. 2024, 8, 179–191. [Google Scholar] [CrossRef]
- Liu, X.; Duan, Y.; Yang, X.; Huang, L.; Gao, M.; Wang, T. Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloys Compd. 2021, 872, 159602. [Google Scholar] [CrossRef]
- Kumari, P.; Gupta, A.K.; Mishra, R.K.; Ahmad, M.; Shahi, R.R. A Comprehensive review: Recent progress on magnetic high entropy alloys and oxides. J. Magn. Magn. Mater. 2022, 554, 169142. [Google Scholar] [CrossRef]
- Miracle, D.B. High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys”. JOM 2017, 69, 2130–2136. [Google Scholar] [CrossRef]
- Chanda, B.; Das, J. An assessment on the stability of the eutectic phases in high entropy alloys. J. Alloys Compd. 2019, 798, 167–173. [Google Scholar] [CrossRef]
- Guo, S.; Hu, Q.; Ng, C.; Liu, C. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 2013, 41, 96–103. [Google Scholar] [CrossRef]
- Zeng, Y.; Man, M.; Bai, K.; Zhang, Y.-W. Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study. Mater. Des. 2021, 202, 109532. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Tsai, R.-C.; Chang, T.; Huang, W.-F. Intermetallic phases in high-entropy alloys: Statistical analysis of their prevalence and structural inheritance. Metals 2019, 9, 247. [Google Scholar] [CrossRef]
- Tsai, M.-H. Three strategies for the design of advanced high-entropy alloys. Entropy 2016, 18, 252. [Google Scholar] [CrossRef]
- Xing, F.; Ma, J.; Shimizu, K.; Furukawa, S. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. 2022, 13, 5065. [Google Scholar] [CrossRef]
- Chen, D.-S.; Chen, M.-K.; Chang, S.-Y. Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. ECS Trans. 2009, 19, 751–762. [Google Scholar] [CrossRef]
- Han, R.; Song, H.; Han, L.; An, M. Atomistic insights on the deformation mechanisms of amorphous/crystalline dual-phase high entropy alloys under nanoindentation. J. Mater. Res. Technol. 2023, 25, 6027–6038. [Google Scholar] [CrossRef]
- Ren, H.; Chen, R.; Gao, X.; Liu, T.; Qin, G.; Wu, S.; Guo, J. Insights on mechanical properties of dual-phase high entropy alloys via Y introduction. J. Alloys Compd. 2022, 929, 167374. [Google Scholar] [CrossRef]
- Xu, C.; Geng, N.; Xiang, Q.; Qu, Y.; Yu, B.; Qiu, K. A novel dual phase high entropy casting alloy with high damping capacity. Mater. Res. Express 2021, 8, 046517. [Google Scholar] [CrossRef]
- Malatji, N.; Lengopeng, T.; Pityana, S.; Popoola, A.P.I. Effect of heat treatment on the microstructure, microhardness, and wear characteristics of AlCrFeCuNi high-entropy alloy. Int. J. Adv. Manuf. Technol. 2020, 111, 2021–2029. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Feng, H.; Fang, Q.; Liu, Y.; Liu, F.; Wu, H.; Liaw, P.K. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites. J. Mater. Sci. Technol. 2020, 54, 14–19. [Google Scholar] [CrossRef]
- Zhang, R.-Z.; Reece, M.J. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A 2019, 7, 22148–22162. [Google Scholar] [CrossRef]
- Barbarossa, S.; Orrù, R.; Cao, G.; Balbo, A.; Zanotto, F.; Sani, E. Optical properties of bulk high-entropy diborides for solar energy applications. J. Alloys Compd. 2023, 935, 167965. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Lu, W.; Wei, B.; Huo, S.; Wang, Y.; Zhou, Y. Low thermal conductivity of dense (TiZrHfVNbTa)Cx high-entropy carbides by tailoring carbon stoichiometry. J. Adv. Ceram. 2023, 12, 49–58. [Google Scholar] [CrossRef]
- Zoita, N.C.; Dinu, M.; Parau, A.C.; López-Ortega, A.; Pana, I.; Grigorescu, C.E.A.; Mondragon, M.; Sobetkii, A.; Almandoz, X.; Rodriguez, J.C.; et al. The characteristics of light (TiCrAl0.5NbCu)CxNy high-entropy coatings deposited using a HiPIMS/DCMS technique. Crystals 2023, 13, 1565. [Google Scholar] [CrossRef]
- Su, W.; Chen, L.; Zhang, W.; Huo, S.; Wang, Y.; Zhou, Y. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr)C. J. Mater. Sci. Technol. 2023, 139, 1–9. [Google Scholar] [CrossRef]
- Chen, T.; Shun, T.; Yeh, J.; Wong, M. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188–189, 193–200. [Google Scholar] [CrossRef]
- Pshyk, A.; Vasylenko, A.; Bakhit, B.; Hultman, L.; Schweizer, P.; Edwards, T.; Michler, J.; Greczynski, G. High-entropy transition metal nitride thin films alloyed with Al: Microstructure, phase composition and mechanical properties. Mater. Des. 2022, 219, 110798. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Chen, L.; Lui, H.-W.; Cai, M.-H.; Yeh, J.-W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 2007, 457, 77–83. [Google Scholar] [CrossRef]
- Schweidler, S.; Tang, Y.; Lin, L.; Karkera, G.; Alsawaf, A.; Bernadet, L.; Breitung, B.; Hahn, H.; Fichtner, M.; Tarancón, A.; et al. Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution. Front. Energy Res. 2022, 10, 983979. [Google Scholar] [CrossRef]
- Gild, J.; Braun, J.; Kaufmann, K.; Marin, E.; Harrington, T.; Hopkins, P.; Vecchio, K.; Luo, J. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Mater. 2019, 5, 337–343. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, K.N.; Ko, W.-S.; Park, E.S. Entropy-stabilized silicides: Expanding the B20 single-phase region from mono-silicide to high-entropy silicide. APL Mater. 2022, 10, 121105. [Google Scholar] [CrossRef]
- Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Shen, W.J.; Tsai, M.H.; Tsai, K.Y.; Juan, C.C.; Tsai, C.W.; Yeh, J.W.; Chang, Y.S. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride. J. Electrochem. Soc. 2013, 160, C531–C535. [Google Scholar] [CrossRef]
- Novikov, V.; Stepanov, N.; Zherebtsov, S.; Salishchev, G. Structure and properties of high-entropy nitride coatings. Metals 2022, 12, 847. [Google Scholar] [CrossRef]
- Arshad, M.; Amer, M.; Hayat, Q.; Janik, V.; Zhang, X.; Moradi, M.; Bai, M. High-entropy coatings (HEC) for high-temperature applications: Materials, processing, and properties. Coatings 2022, 12, 691. [Google Scholar] [CrossRef]
- Firstov, S.A.; Gorban’, V.F.; Danilenko, N.I.; Karpets, M.V.; Andreev, A.A.; Makarenko, E.S. Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti–V–Zr–Nb–Hf alloy. Powder Met. Met. Ceram. 2014, 52, 560–566. [Google Scholar] [CrossRef]
- Shen, W.-J.; Tsai, M.-H.; Yeh, J.-W. Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings. Coatings 2015, 5, 312–325. [Google Scholar] [CrossRef]
- Kirnbauer, A.; Kretschmer, A.; Koller, C.; Wojcik, T.; Paneta, V.; Hans, M.; Schneider, J.; Polcik, P.; Mayrhofer, P. Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides. Surf. Coat. Technol. 2020, 389, 125674. [Google Scholar] [CrossRef]
- Lai, C.-H.; Lin, S.-J.; Yeh, J.-W.; Chang, S.-Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 2006, 201, 3275–3280. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Z.; Xing, X.; Ren, X.; Zhou, Y.; Yang, Q. Effect of Nb additive on wear resistance and tensile properties of the hypereutectic Fe-Cr-C hardfacing alloy. Mater. Today Commun. 2020, 24, 101232. [Google Scholar] [CrossRef]
- Chapala, P.; Acharyya, S.G.; Shariff, S.M.; Naik, G. Novel Ti-Nb alloys with improved wear resistance for biomedical implant application. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: New York, NY, USA, 2016; pp. 4208–4211. [Google Scholar]
- Xiong, H.; Ma, Y.; Zhang, H.; Chen, L. Design of Cu–Cr alloys with high strength and high ductility based on first-principles calculations. Metals 2022, 12, 1406. [Google Scholar] [CrossRef]
- Guo, X.; Xiao, Z.; Qiu, W.; Li, Z.; Zhao, Z.; Wang, X.; Jiang, Y. Microstructure and properties of Cu-Cr-Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature. Mater. Sci. Eng. A 2019, 749, 281–290. [Google Scholar] [CrossRef]
- Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Tikhonovsky, M.; Zherebtsov, S. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194–203. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables. J. Phys. Chem. Ref. Data 1998, 9, 1–1951. [Google Scholar]
- Kouznetsov, V.; Macák, K.; Schneider, J.M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999, 122, 290–293. [Google Scholar] [CrossRef]
- Zoita, N.; Dinu, M.; Kiss, A.; Logofatu, C.; Braic, M. A comparative investigation of hetero-epitaxial TiC thin films deposited by magnetron sputtering using either hybrid DCMS/HiPIMS or reactive DCMS process. Appl. Surf. Sci. 2021, 537, 147903. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- Patterson, A.L. The scherrer formula for X-ray particle size determination. Phys. Rev. B 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef]
- Guo, S. Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 2015, 31, 1223–1230. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B.; Woodward, C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Huang, S.; Zhu, S.; Wang, F.; Li, D. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM). Materials 2019, 12, 720. [Google Scholar] [CrossRef]
- Braic, M.; Braic, V.; Balaceanu, M.; Zoita, C.; Vladescu, A.; Grigore, E. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2010, 204, 2010–2014. [Google Scholar] [CrossRef]
- Kube, S.A.; Sohn, S.; Uhl, D.; Datye, A.; Mehta, A.; Schroers, J. Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater. 2019, 166, 677–686. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Liu, C.T. Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 2014, 66, 1966–1972. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-entropy alloys: A critical review. Mater. Res. Let. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Xiao, L.; Zheng, Z.; Guo, S.; Huang, P.; Wang, F. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys. Mater. Des. 2020, 194, 108895. [Google Scholar] [CrossRef]
- Reverte, E.; Keller, C.; Calvo-Dahlborg, M.; Alcalá, G.; Campos, M.; Cornide, J. Effect of Y2O3 addition on the microstructure and mechanical properties of an Al1.8CoCrCu0.5FeNi BCC HEA. J. Alloys Compd. 2023, 960, 170647. [Google Scholar] [CrossRef]
- Schiøtz, J.; Di Tolla, F.D.; Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391, 561–563. [Google Scholar] [CrossRef]
- Ranjith, R.; Giridharan, P.K.; Velmurugan, C.; Chinnusamy, C. Formation of lubricated tribo layer, grain boundary precipitates, and white spots on titanium-coated graphite–reinforced hybrid composites. J. Aust. Ceram. Soc. 2019, 55, 645–655. [Google Scholar] [CrossRef]
- Halder, N.C.; Wagner, C.N.J. Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 1966, 20, 312–313. [Google Scholar] [CrossRef]
- Liang, S.-C.; Tsai, D.-C.; Chang, Z.-C.; Sung, H.-S.; Lin, Y.-C.; Yeh, Y.-J.; Deng, M.-J.; Shieu, F.-S. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl. Surf. Sci. 2011, 258, 399–403. [Google Scholar] [CrossRef]
- Wade, K. Metal-metal and metal-carbon bond energy terms for the rhodium carbonyl clusters Rh4(CO)12 and Rh6(CO)16. Inorg. Nucl. Chem. Lett. 1978, 14, 71–74. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Zhou, H.; Liu, X. Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum 2020, 181, 109706. [Google Scholar] [CrossRef]
- Lewin, E. Multi-component and high-entropy nitride coatings—A promising field in need of a novel approach. J. Appl. Phys. 2020, 127, 160901. [Google Scholar] [CrossRef]
- Magomedov, M.N. Study of the FCC-BCC phase transition in an Au-Fe alloy. Phys. Solid State 2022, 63, 2135. [Google Scholar] [CrossRef]
- Haraguchi, T.; Otsubo, K.; Sakata, O.; Fujiwara, A.; Kitagawa, H. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metal–organic framework thin films. Inorg. Chem. 2015, 54, 11593–11595. [Google Scholar] [CrossRef] [PubMed]
- Musil, J.; Novák, P.; Čerstvý, R.; Soukup, Z. Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films. J. Vac. Sci. Technol. A 2010, 28, 244–249. [Google Scholar] [CrossRef]
- Lou, B.-S.; Lin, R.-Z.; Li, C.-L.; Lee, J.-W. Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition. Surf. Coat. Technol. 2024, 483, 130772. [Google Scholar] [CrossRef]
- Hung, S.-B.; Wang, C.-J.; Chen, Y.-Y.; Lee, J.-W.; Li, C.-L. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings. Surf. Coat. Technol. 2019, 375, 802–809. [Google Scholar] [CrossRef]
- Gourbeyre, Y.; Tribollet, B.; Dagbert, C.; Hyspecka, L. A physical model for anticorrosion behavior of duplex coatings. J. Electrochem. Soc. 2006, 153, B162–B168. [Google Scholar] [CrossRef]
Elements | C | Mn | Cr | Si | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|
C45 (wt. %) | 0.436 | 0.639 | 0.351 | 0.291 | 0.294 | 0.089 | balance |
Sample | Ti (at. %) | Cr (at. %) | Nb (at. %) | Y (at. %) | Al (at. %) | VEC | Stoichiometry |
---|---|---|---|---|---|---|---|
H1 | 24.3 | 23.4 | 25.1 | 24.2 | 3.0 | 4.45 | TiAl0.12CrNbY |
H2 | 23.2 | 22.8 | 23.7 | 24.1 | 6.2 | 4.37 | TiAl0.25CrNbY |
H3 | 22.3 | 20.6 | 22.3 | 23.0 | 11.8 | 4.28 | TiAl0.5CrNbY |
H4 | 20.1 | 19.9 | 19.8 | 20.4 | 19.8 | 4.19 | TiAlCrNbY |
Sample | Ti | Cr | Al | Nb | Y | N | Stoichiometry |
---|---|---|---|---|---|---|---|
HN1 | 14.2 | 15.0 | 8.2 | 14.9 | 14.6 | 32.9 | (TiAl0.5CrNbY)N0.5 |
HN2 | 11.8 | 12.4 | 6.7 | 11.9 | 11.4 | 45.8 | (TiAl0.5CrNbY)N0.85 |
Material | Rs (Ω cm2) | CPEcoat | Rpore (Ω cm2) | CPEdl | Rct (Ω cm2) | ||
---|---|---|---|---|---|---|---|
Y01 (F cm−2 s−n) | n1 | Y02 (F cm−2 s−n) | n2 | ||||
H3 | 37 | 7.69 × 10−6 | 0.99 | 53 | 2.41 × 10−5 | 0.79 | 51,684 |
HN1 | 28 | 8.47 × 10−6 | 0.99 | 65 | 1.67 × 10−5 | 0.80 | 646,190 |
HN2 | 27 | 1.06 × 10−5 | 0.99 | 41 | 3.18 × 10−5 | 0.78 | 511,910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoita, N.C.; Dinu, M.; Parau, A.C.; Pana, I.; Kiss, A.E. Mechanical, Tribological, and Corrosion Resistance Properties of (TiAlxCrNbY)Ny High-Entropy Coatings Synthesized Through Hybrid Reactive Magnetron Sputtering. Crystals 2024, 14, 993. https://doi.org/10.3390/cryst14110993
Zoita NC, Dinu M, Parau AC, Pana I, Kiss AE. Mechanical, Tribological, and Corrosion Resistance Properties of (TiAlxCrNbY)Ny High-Entropy Coatings Synthesized Through Hybrid Reactive Magnetron Sputtering. Crystals. 2024; 14(11):993. https://doi.org/10.3390/cryst14110993
Chicago/Turabian StyleZoita, Nicolae C., Mihaela Dinu, Anca C. Parau, Iulian Pana, and Adrian E. Kiss. 2024. "Mechanical, Tribological, and Corrosion Resistance Properties of (TiAlxCrNbY)Ny High-Entropy Coatings Synthesized Through Hybrid Reactive Magnetron Sputtering" Crystals 14, no. 11: 993. https://doi.org/10.3390/cryst14110993
APA StyleZoita, N. C., Dinu, M., Parau, A. C., Pana, I., & Kiss, A. E. (2024). Mechanical, Tribological, and Corrosion Resistance Properties of (TiAlxCrNbY)Ny High-Entropy Coatings Synthesized Through Hybrid Reactive Magnetron Sputtering. Crystals, 14(11), 993. https://doi.org/10.3390/cryst14110993