Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Mechanical Testing
2.3. Microstructure Analysis
2.4. Quasi In Situ EBSD
3. Results
3.1. Comparison of Tensile Properties
3.2. Fracture Patterns at Different Temperatures
3.3. Deformed Microstructure After Tensile Fracture
3.4. Quasi In Situ EBSD with Different Orientations
4. Discussion
4.1. Deformation Mechanism at Different Temperatures
4.2. Effects of Temperature and Secondary Orientations on Deformation Behavior
5. Conclusions
- Deformation at 850 °C leads to higher tensile ductility and higher variance in tensile ductility among secondary orientations. Apart from this variation in ductility at higher temperatures, we found a weak influence of secondary orientation on mechanical properties.
- The fracture mode at RT is brittle fracture, but the micro-dimples formed at 850 °C provide certain plasticity to the alloy, leading to a mixture of cleavage and ductile fractures mode.
- At RT, dislocations accumulate mainly at the γ phase with limited dislocation transmission into the γ′ phase and the γ′ phase deform by stacking faults formation. At 850 °C, stacking faults are absent in the γ′ phase, but it is relatively easy for dislocation transmission to occur through paired partial dislocation mechanisms, leading to a more uniform dislocation distribution, resulting in a lower work hardening rate but improved fracture strain.
- Local entanglements of high density dislocations were found in some of the γ′ phase. This local high deformation zone is correlated with the local segregation of γ stabilizing elements.
- The secondary orientation sample with the [100] direction rotated 37° demonstrated superior tensile ductility at 850 °C, which was supported by the high and sustained accumulation of GNDs even though this sample contained the highest area fraction of precipitates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, R.H.; Yue, Z.F.; Wang, M. Effect of initial γ/γ′ microstructure on creep of single crystal nickel-based superalloys: A phase-field simulation incorporating dislocation dynamics. J. Alloys Compd. 2019, 779, 326–334. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Hu, M.H.; Li, C.; Guo, Q.Y.; Yu, L.M.; Ding, H.M.; Liu, Y.C. Microstructure-performance relationships in Ni-based superalloy with coprecipitation of γ′ and γ″ phases. Mater. Sci. Eng. A 2022, 855, 143954. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Luo, D.L.; Zhang, J.J.; Qu, D.F.; Zheng, M.; Chen, W.Y.; Cheng, J. Nano-cutting deformation characteristics and atomic-scale behavior of two-phase γ/γ′ nickel-based single crystal superalloy. Intermetallics 2023, 161, 107985. [Google Scholar] [CrossRef]
- Li, Y.W.; Wang, L.; He, Y.F.; Zheng, W.; Lou, L.H.; Zhang, J. Role of interfacial dislocation networks during secondary creep at elevated temperatures in a single crystal Ni-based superalloy. Scr. Mater. 2022, 217, 114769. [Google Scholar] [CrossRef]
- Wang, S.J.; He, J.J.; Li, W.P.; Gong, Z.H.; Zhou, L.B.; Yang, J.G.; Cai, Y.H.; Du, Y.X. Microstructure analysis and cracking mechanism of aero-engine hot-end component K4169 superalloy based on in-situ EBSD test. J. Alloys Compd. 2023, 960, 170781. [Google Scholar] [CrossRef]
- Xu, Z.C.; Britton, B.; Guo, Y. Casting voids in nickel superalloy and the mechanical behavior under room temperature tensile deformation. Mater. Sci. Eng. A 2021, 806, 140800. [Google Scholar] [CrossRef]
- Wang, G.L.; Liu, J.L.; Liu, J.D.; Wang, X.G.; Zhou, Y.Z.; Sun, X.D.; Zhang, H.F.; Jin, T. Temperature dependence of tensile behavior and deformation microstructure of a Re-containing Ni-base single crystal superalloy. Mater. Des. 2017, 130, 131. [Google Scholar] [CrossRef]
- Tan, Z.H.; Wang, X.G.; Du, Y.L.; Duan, T.F.; Yang, Y.H.; Liu, J.L.; Liu, J.D.; Yang, L.; Li, J.G.; Zhou, Y.Z. Temperature dependence on tensile deformation mechanisms in a novel Nickel-based single crystal superalloy. Mater. Sci. Eng. 2020, 776, 138997. [Google Scholar] [CrossRef]
- Cheng, T.W.; Wang, Y.W.; Zhao, Y.X.; Lv, B.B.; Ma, D.X. Effect of solidification direction on microstructure and mechanical property of single crystal superalloy CMSX-4. Mater. Charact. 2023, 202, 112992. [Google Scholar] [CrossRef]
- Liu, J.L.; Jin, T.; Sun, X.F.; Zhang, J.H.; Guan, H.R.; Hu, Z.Q. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures. Mater. Sci. Eng. A 2008, 479, 277–284. [Google Scholar] [CrossRef]
- Wang, L.N.; Liu, Y.; Yu, J.J.; Xu, Y.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy. Mater. Sci. Eng. A 2009, 505, 144–150. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.H.; Liu, J.L.; Jin, T.; Xu, Y.B.; Hu, Z.Q. Plastic deformation inhomogeneity in a single crystal nickel-base superalloy. Mater. Sci. Eng. A 2002, 325, 478–483. [Google Scholar] [CrossRef]
- Li, Y.M.; Tan, Z.H.; Wang, X.G.; Mu, Y.; Zhao, H.C.; Tan, H.B.; Liu, J.L.; Wang, B.; Li, J.G.; Zhou, Y.Z.; et al. Stress rupture anisotropy of a Ru-containing fourth-generation single crystal superalloy at 760 °C and 1100 °C. Mater. Sci. Eng. A 2022, 856, 144006. [Google Scholar] [CrossRef]
- Arakere, N.K.; Swanson, G. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys. J. Eng. Gas Turbines Power 2002, 124, 161–176. [Google Scholar] [CrossRef]
- Sabnis, P.A.; Mazière, M.; Forest, S.; Arakere, N.K.; Ebrahimi, F. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals. Int. J. Plast. 2012, 28, 102–123. [Google Scholar] [CrossRef]
- Qiu, W.H.; He, Z.W.; Fan, Y.N.; Shi, H.J.; Gu, J.L. Effects of secondary orientation on crack closure behavior of nickel-based single crystal superalloys. Int. J. Fatigue 2016, 83, 335–343. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Wang, L.; Wang, D.; Lou, L.H.; Zhang, J. Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys. Mater. Sci. Eng. A 2016, 659, 130–142. [Google Scholar] [CrossRef]
- Qin, L.; Pei, Y.; Li, S.; Gong, S.; Xu, H. Influence of stress and secondary orientation on the oxidationinduced dynamic recrystallization behavior of a Ni-based single crystal superalloy. J. Alloys Compd. 2017, 706, 455–460. [Google Scholar] [CrossRef]
- Suzuki, S.; Sakaguchi, M.; Inoue, H. Temperature dependent fatigue crack propagation in a single crystal Ni-base superalloy affected by primary and secondary orientations. Mater. Sci. Eng. A 2018, 724, 559–565. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, X.; Wang, P.; Lu, S.P. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations. Int. J. Plast. 2019, 119, 249–272. [Google Scholar] [CrossRef]
- Guo, Z.X.; Song, Z.Y.; Liu, H.H.; Hu, D.J.; Huang, D.W.; Yan, X.J.; Yan, W.T. A dislocation-based damage-coupled constitutive model for single crystal superalloy: Unveiling the effect of secondary orientation on creep life of circular hole. Int. J. Plast. 2024, 173, 103874. [Google Scholar] [CrossRef]
- Rohaizat, N.I.; Alharbi, K.; Pinna, C.; Ghadbeigi, H.; Hanlon, D.N.; Azid, I.A. Using a Correction Factor to Remove Machine Compliance in a Tensile Test on DP1000 Steel Validated with 2D Digital Image Correlation Technique. In Progress in Engineering Technology III. Advanced Structured Materials; Bakar, M.H.A., Zahelem, M.N., Öchsner, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 113–123. [Google Scholar] [CrossRef]
- Lv, P.S.; Liu, L.R.; Zhao, G.Q.; Guo, S.D.; Zhou, Z.R.; Zhao, Y.S.; Zhang, J. Temperature effects on tensile behaviors and relevant deformation mechanisms of a low-cost nickel-based single crystal superalloy containing 1.5% Re. J. Alloys Compd. 2022, 926, 166819. [Google Scholar] [CrossRef]
- Tian, S.G.; Zhu, X.J.; Wu, J.; Yu, H.C.; Shu, D.L.; Qian, B.J. Influence of Temperature on Stacking Fault Energy and Creep Mechanism of a Single Crystal Nickel-based Superalloy. J. Mater. Sci. Technol. 2016, 32, 790–798. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hansen, N.; Bammann, D.J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 2003, 48, 147–153. [Google Scholar] [CrossRef]
- Gao, H.J.; Huang, Y.G. Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 2003, 48, 113–118. [Google Scholar] [CrossRef]
- Song, W.; Wang, X.G.; Li, J.G.; Meng, J.; Yang, Y.H.; Liu, J.L.; Liu, J.D.; Zhou, Y.Z.; Sun, X.F. Effect of Ru on tensile behavior and deformation mechanism of a nickel-based single crystal superalloy. Mater. Sci. Eng. A 2021, 802, 140430. [Google Scholar] [CrossRef]
- Kruml, T.; Viguier, B.; Bonneville, J.; Martin, J.L. Temperature dependence of dislocation microstructure in Ni3(Al,Hf). Mater. Sci. Eng. A 1997, 234–236, 755–757. [Google Scholar] [CrossRef]
- Li, W.G.; Ma, J.Z.; Kou, H.B.; Shao, J.X.; Zhang, X.Y.; Deng, Y.; Tao, Y.; Fang, D.N. Modeling the effect of temperature on the yield strength of precipitation strengthening Ni-base superalloys. Int. J. Plast. 2019, 116, 143–158. [Google Scholar] [CrossRef]
- Wang, X.G.; Liu, J.L.; Jin, T.; Sun, X.F. The effects of ruthenium additions on tensile deformation mechanisms of single crystal superalloys at different temperatures. Mater. Des. 2014, 63, 286–293. [Google Scholar] [CrossRef]
- Cai, W.; Nix, W.D. Imperfections in Crystalline Solids; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Liu, S.H.; Wang, C.Y.; Yan, P.; Yu, T. The effect of Ta, W, and Re additions on the tensile-deformation behavior of model Ni-based single-crystal superalloys at intermediate temperature. Mater. Sci. Eng. A 2022, 850, 143594. [Google Scholar] [CrossRef]
- Qiu, D.; Feng, L.S.; Zhao, P.Y. Modulating superdislocation cores and planar faults of Ni3Al through applied stresses. Comput. Mater. Sci. 2024, 237, 112865. [Google Scholar] [CrossRef]
- Hirsch, P.B. Kear-Wilsdorf locks, jogs and the formation of antiphase-boundary tubes in Ni3Al. Philos. Mag. A 1996, 74, 1019–1040. [Google Scholar] [CrossRef]
- Love, G.R. Dislocation pipe diffusion. Acta Metall. 1964, 12, 731–737. [Google Scholar] [CrossRef]
- Wu, X.X.; Makineni, S.K.; Kontis, P.; Dehm, G.; Raabe, D.; Gault, B.; Eggeler, G. On the segregation of Re at dislocations in the γ′ phase of Ni-based single crystal superalloys. Materialia 2018, 4, 109–114. [Google Scholar] [CrossRef]
- Shi, Z.X.; Liu, S.Z.; Yu, J.; Rong, L.J. Tensile Behavior of the Second Generation Single Crystal Superalloy DD6. J. Iron Steel Res. Int. 2015, 22, 738–742. [Google Scholar] [CrossRef]
- Jiang, W.X.; Lu, J.X.; Li, F.Q.; Wang, J.; Zhang, Y.F.; Zhang, Z.; Zhao, Y.S.; Zhang, J. In-situ EBSD investigation of the effect of orientation on plastic deformation behavior of a single crystal superalloy. Mater. Sci. Eng. A 2022, 849, 143453. [Google Scholar] [CrossRef]
- Guo, Z.X.; Song, Z.Y.; Ding, X.; Guo, K.M.; Liu, H.Z.; Yan, H.; Huang, D.W.; Yan, X.J. Slip Band Evolution Behavior near Circular Hole on Single Crystal Superalloy: Experiment and Simulation. Int. J. Plast. 2023, 165, 103600. [Google Scholar] [CrossRef]
- Rui, S.S.; He, Z.W.; Guo, Y.Y.; Su, Y.; Han, Q.N.; Ma, X.F.; Shi, H.J. Secondary orientation effects on the low cycle fatigue behaviors of rectangular-sectional Ni-based single crystal superalloys at medium and high temperatures. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 3290–3305. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Zheng, M.R.; Min, S.L.; Wang, D.; Zhang, G.; Dong, J.S.; Lou, L.H. Combined effect of secondary dendrite orientation and wall thickness on creep behavior of a Ni-base single crystal superalloy. J. Alloys Compd. 2023, 968, 171968. [Google Scholar] [CrossRef]
C | Cr | Co | W | Al | Ta | Mo | Hf | B | Re | Ni | |
---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | 0.05 | 7.05 | 7.5 | 5.4 | 6.24 | 6.58 | 1.51 | 0.16 | 0.0047 | 2.96 | Bal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zong, C.; Ma, G.; Zhao, Y.; Huang, J.; Guo, Y.; Chen, X. Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys. Crystals 2024, 14, 996. https://doi.org/10.3390/cryst14110996
Liu S, Zong C, Ma G, Zhao Y, Huang J, Guo Y, Chen X. Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys. Crystals. 2024; 14(11):996. https://doi.org/10.3390/cryst14110996
Chicago/Turabian StyleLiu, Sujie, Cui Zong, Guangcai Ma, Yafeng Zhao, Junjie Huang, Yi Guo, and Xingqiu Chen. 2024. "Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys" Crystals 14, no. 11: 996. https://doi.org/10.3390/cryst14110996
APA StyleLiu, S., Zong, C., Ma, G., Zhao, Y., Huang, J., Guo, Y., & Chen, X. (2024). Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys. Crystals, 14(11), 996. https://doi.org/10.3390/cryst14110996