In Situ Microscopy with Real-Time Image Analysis Enables Online Monitoring of Technical Protein Crystallization Kinetics in Stirred Crystallizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Mutagenesis, Production and Purification
2.2. Protein Crystallization and Standardization of Conditions
2.3. Protein Analytics
2.4. Protein Crystal Detection by Real-Time Image Analysis
2.5. Empirical Modeling of Batch Crystallization Process Kinetics
3. Results and Discussion
3.1. Optimum Stirrer Speed and Maximum Energy Dissipation Rate
3.2. Monitoring of LbADH WT Crystallization Processes with In-Situ Microscopy
3.3. Monitoring of Crystallization Processes with LbADH Mutants
3.4. Final Crystal Size Distributions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.-Z.; Zhang, C.-Y.; Wang, Q.-J.; Guo, Y.-Z.; Dong, C.; Yan, E.-K.; Liu, W.-J.; Zheng, X.-W.; Yin, D.-C. Utilization of Cyclodextrins and Its Derivative Particles as Nucleants for Protein Crystallization. Cryst. Growth Des. 2017, 17, 6189–6200. [Google Scholar] [CrossRef]
- Chayen, N.E.; Saridakis, E. Protein Crystallization: From Purified Protein to Diffraction-Quality Crystal. Nat. Methods 2008, 5, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R. Membrane-Based Micro-Volume Dialysis Method for Rapid and High-Throughput Protein Crystallization. Processes 2023, 11, 2148. [Google Scholar] [CrossRef]
- Yan, E.-K.; Zhao, F.-Z.; Zhang, C.-Y.; Yang, X.-Z.; Shi, M.; He, J.; Liu, Y.-L.; Liu, Y.; Hou, H.; Yin, D.-C. Seeding Protein Crystallization with Cross-Linked Protein Crystals. Cryst. Growth Des. 2018, 18, 1090–1100. [Google Scholar] [CrossRef]
- Nowotny, P.; Hermann, J.; Li, J.; Krautenbacher, A.; Klöpfer, K.; Hekmat, D.; Weuster-Botz, D. Rational Crystal Contact Engineering of Lactobacillus Brevis Alcohol Dehydrogenase To Promote Technical Protein Crystallization. Cryst. Growth Des. 2019, 19, 2380–2387. [Google Scholar] [CrossRef]
- Grob, P.; Huber, M.; Walla, B.; Hermann, J.; Janowski, R.; Niessing, D.; Hekmat, D.; Weuster-Botz, D. Crystal Contact Engineering Enables Efficient Capture and Purification of an Oxidoreductase by Technical Crystallization. Biotechnol. J. 2020, 15, 2000010. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Y.; Sun, J. Heterogeneous Nucleation in Protein Crystallization. Biomimetics 2023, 8, 68. [Google Scholar] [CrossRef]
- Asherie, N.; Ginsberg, C.; Greenbaum, A.; Blass, S.; Knafo, S. Effects of Protein Purity and Precipitant Stereochemistry on the Crystallization of Thaumatin. Cryst. Growth Des. 2008, 8, 4200–4207. [Google Scholar] [CrossRef]
- Fulton, K.F.; Ervine, S.; Faux, N.; Forster, R.; Jodun, R.A.; Ly, W.; Robilliard, L.; Sonsini, J.; Whelan, D.; Whisstock, J.C.; et al. CLIMS: Crystallography Laboratory Information Management System. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1691–1693. [Google Scholar] [CrossRef]
- Tanaka, H.; Utata, R.; Tsuganezawa, K.; Takahashi, S.; Tanaka, A. Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution. Crystals 2022, 12, 881. [Google Scholar] [CrossRef]
- Hebel, D.; Huber, S.; Stanislawski, B.; Hekmat, D. Stirred Batch Crystallization of a Therapeutic Antibody Fragment. J. Biotechnol. 2013, 166, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Dikbas, F. Compositional Correlation Analysis of Gene Expression Time Series. Acad. Platf. J. Eng. Smart Syst. 2022, 10, 30–41. [Google Scholar] [CrossRef]
- Wegner, C.H.; Zimmermann, I.; Hubbuch, J. Rapid Analysis for Multicomponent High-Throughput Crystallization Screening: Combination of UV–Vis Spectroscopy and Chemometrics. Cryst. Growth Des. 2022, 22, 1054–1065. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Nattermann, U.; Bera, A.K.; Borst, A.J.; Yaman, M.Y.; Bick, M.J.; Yang, E.C.; Sheffler, W.; Lee, B.; et al. Accurate Computational Design of Three-Dimensional Protein Crystals. Nat. Mater. 2023, 22, 1556–1563. [Google Scholar] [CrossRef]
- Hansen, C.L.; Sommer, M.O.A.; Quake, S.R. Systematic Investigation of Protein Phase Behavior with a Microfluidic Formulator. Proc. Natl. Acad. Sci. USA 2004, 101, 14431–14436. [Google Scholar] [CrossRef]
- Bijelic, A.; Rompel, A. Ten Good Reasons for the Use of the Tellurium-Centered Anderson–Evans Polyoxotungstate in Protein Crystallography. Acc. Chem. Res. 2017, 50, 1441–1448. [Google Scholar] [CrossRef]
- Nanev, C.N. How Do Crystal Lattice Contacts Reveal Protein Crystallization Mechanism? Cryst. Res. Technol. 2008, 43, 914–920. [Google Scholar] [CrossRef]
- Cieślik, M.; Derewenda, Z.S. The Role of Entropy and Polarity in Intermolecular Contacts in Protein Crystals. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, L.; Cooper, D.R.; Derewenda, Z.S.; Eisenberg, D. Toward Rational Protein Crystallization: A Web Server for the Design of Crystallizable Protein Variants. Protein Sci. 2007, 16, 1569–1576. [Google Scholar] [CrossRef]
- Walla, B.; Bischoff, D.; Janowski, R.; Von Den Eichen, N.; Niessing, D.; Weuster-Botz, D. Transfer of a Rational Crystal Contact Engineering Strategy between Diverse Alcohol Dehydrogenases. Crystals 2021, 11, 975. [Google Scholar] [CrossRef]
- Cooper, D.R.; Boczek, T.; Grelewska, K.; Pinkowska, M.; Sikorska, M.; Zawadzki, M.; Derewenda, Z. Protein Crystallization by Surface Entropy Reduction: Optimization of the SER Strategy. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, J.; Mayer, J.; Hintmann, M.; Lukat, P.; Blankenfeldt, W.; Biedendieck, R. Multistep Engineering of a Penicillin G Acylase for Systematic Improvement of Crystallization Efficiency. Cryst. Growth Des. 2023, 23, 3230–3243. [Google Scholar] [CrossRef]
- Kadam, S.S.; Van Der Windt, E.; Daudey, P.J.; Kramer, H.J.M. A Comparative Study of ATR-FTIR and FT-NIR Spectroscopy for In-Situ Concentration Monitoring during Batch Cooling Crystallization Processes. Cryst. Growth Des. 2010, 10, 2629–2640. [Google Scholar] [CrossRef]
- Lee, K.-S.; Kim, K.-J.; Ulrich, J. In Situ Monitoring of Cocrystallization of Salicylic Acid–4,4′-Dipyridyl in Solution Using Raman Spectroscopy. Cryst. Growth Des. 2014, 14, 2893–2899. [Google Scholar] [CrossRef]
- Yin, D.C.; Inatomi, Y.; Luo, H.M.; Li, H.S.; Lu, H.M.; Ye, Y.J.; Wakayama, N.I. Interferometry Measurement of Protein Concentration Evolution during Crystallization and Dissolution with Improved Reliability and Versatility. Meas. Sci. Technol. 2008, 19, 045303. [Google Scholar] [CrossRef]
- Snell, E.H.; Helliwell, J.R.; Boggon, T.J.; Lautenschlager, P.; Potthast, L. Lysozyme Crystal Growth Kinetics Monitored Using a Mach–Zehnder Interferometer. Acta Crystallogr. D Biol. Crystallogr. 1996, 52, 529–533. [Google Scholar] [CrossRef]
- Nakazato, K.; Homma, T.; Tomo, T. Rapid Solubility Measurement of Protein Crystals as a Function of Precipitant Concentration with Micro-Dialysis Cell and Two-Beam Interferometer. J. Synchrotron Rad. 2004, 11, 34–37. [Google Scholar] [CrossRef]
- Li, M.; Wilkinson, D.; Patchigolla, K.; Mougin, P.; Roberts, K.J.; Tweedie, R. On-Line Crystallization Process Parameter Measurements Using Ultrasonic Attenuation Spectroscopy. Cryst. Growth Des. 2004, 4, 955–963. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, K.-J. Quantitative Study on Polymorphic Form in Solution Crystallization of Clopidogrel Hydrogen Sulfate. Ind. Eng. Chem. Res. 2009, 48, 11133–11139. [Google Scholar] [CrossRef]
- Tian, W.; Li, W.; Yang, H. Protein Nucleation and Crystallization Process with Process Analytical Technologies in a Batch Crystallizer. Cryst. Growth Des. 2023, 23, 5181–5193. [Google Scholar] [CrossRef]
- Walla, B.; Bischoff, D.; Corona Viramontes, I.; Montes Figueredo, S.; Weuster-Botz, D. Recent Advances in the Monitoring of Protein Crystallization Processes in Downstream Processing. Crystals 2023, 13, 773. [Google Scholar] [CrossRef]
- Bowman, S.; Lynch, M. Advances Using Machine Learning and Computational Tools for Crystal Growth and Detection. Acta Crystallogr. A Found. Adv. 2022, 78, a68. [Google Scholar] [CrossRef]
- Bischoff, D.; Walla, B.; Weuster-Botz, D. Machine Learning-Based Protein Crystal Detection for Monitoring of Crystallization Processes Enabled with Large-Scale Synthetic Data Sets of Photorealistic Images. Anal. Bioanal. Chem. 2022, 414, 6379–6391. [Google Scholar] [CrossRef]
- Lu, M.; Rao, S.; Yue, H.; Han, J.; Wang, J. Recent Advances in the Application of Machine Learning to Crystal Behavior and Crystallization Process Control. Cryst. Growth Des. 2024, 24, 5374–5396. [Google Scholar] [CrossRef]
- Sauter, A.; Roosen-Runge, F.; Zhang, F.; Lotze, G.; Jacobs, R.M.J.; Schreiber, F. Real-Time Observation of Nonclassical Protein Crystallization Kinetics. J. Am. Chem. Soc. 2015, 137, 1485–1491. [Google Scholar] [CrossRef]
- Pantuso, E.; Mastropietro, T.F.; Briuglia, M.L.; Gerard, C.J.J.; Curcio, E.; Ter Horst, J.H.; Nicoletta, F.P.; Di Profio, G. On the Aggregation and Nucleation Mechanism of the Monoclonal Antibody Anti-CD20 Near Liquid-Liquid Phase Separation (LLPS). Sci. Rep. 2020, 10, 8902. [Google Scholar] [CrossRef]
- Grob, P. Crystal Contact Engineering to Enhance Protein Crystallization Processes. Doctoral’s Thesis, Technical University Munich, Munich, Germany, 20 October 2020. [Google Scholar]
- Hermann, J.; Nowotny, P.; Schrader, T.E.; Biggel, P.; Hekmat, D.; Weuster-Botz, D. Neutron and X-Ray Crystal Structures of Lactobacillus Brevis Alcohol Dehydrogenase Reveal New Insights into Hydrogen-Bonding Pathways. Acta Crystallogr. F Struct. Biol. Commun. 2018, 74, 754–764. [Google Scholar] [CrossRef]
- Hermann, J.; Bischoff, D.; Grob, P.; Janowski, R.; Hekmat, D.; Niessing, D.; Zacharias, M.; Weuster-Botz, D. Controlling Protein Crystallization by Free Energy Guided Design of Interactions at Crystal Contacts. Crystals 2021, 11, 588. [Google Scholar] [CrossRef]
- Riesenberg, D.; Schulz, V.; Knorre, W.A.; Pohl, H.-D.; Korz, D.; Sanders, E.A.; Roß, A.; Deckwer, W.-D. High Cell Density Cultivation of Escherichia Coli at Controlled Specific Growth Rate. J. Biotechnol. 1991, 20, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Schmideder, A.; Cremer, J.H.; Weuster-Botz, D. Parallel Steady State Studies on a Milliliter Scale Accelerate Fed-batch Bioprocess Design for Recombinant Protein Production with Escherichia coli. Biotechnol. Progress. 2016, 32, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, B.; Helk, B.; Rondeau, J.; Anton, S.; Wilke, A.; Scheyerer, P.; Fries, J.; Hekmat, D.; Weuster-Botz, D. Protein Crystallization in Stirred Systems—Scale-up via the Maximum Local Energy Dissipation. Biotech. Bioeng. 2013, 110, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Henzler, H.; Biedermann, A. Modelluntersuchungen Zur Partikelbeanspruchung in Reaktoren. Chem. Ing. Tech. 1996, 68, 1546–1561. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.-C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein Identification and Analysis Tools in the ExPASy Server. In 2-D Proteome Analysis Protocols; Humana Press: Totowa, NJ, USA, 1998; Volume 112, pp. 531–552. ISBN 978-1-59259-584-6. [Google Scholar]
- Han, J.; Ding, J.; Li, J.; Xia, G.-S. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Z.; Rohani, S. Deep Learning-Based Oriented Object Detection for in Situ Image Monitoring and Analysis: A Process Analytical Technology (PAT) Application for Taurine Crystallization. Chem. Eng. Res. Des. 2021, 170, 444–455. [Google Scholar] [CrossRef]
- Du, J.S.; Bae, Y.; De Yoreo, J.J. Non-Classical Crystallization in Soft and Organic Materials. Nat. Rev. Mater. 2024, 9, 229–248. [Google Scholar] [CrossRef]
- Smejkal, B. Aufreinigung und Formulierung eines therapeutischen Antikörpers mittels Kristallisation. Doctoral’s Thesis, Technical University Munich, Munich, Germany, 11 March 2013. [Google Scholar]
- Fudo, S.; Qi, F.; Nukaga, M.; Hoshino, T. Influence of Precipitants on Molecular Arrangements and Space Groups of Protein Crystals. Cryst. Growth Des. 2017, 17, 534–542. [Google Scholar] [CrossRef]
- Svedružić, Ž.M.; Spivey, H.O. Interaction between Mammalian Glyceraldehyde-3-phosphate Dehydrogenase and L-lactate Dehydrogenase from Heart and Muscle. Proteins 2006, 63, 501–511. [Google Scholar] [CrossRef]
- Nazemi, M. Production and Analysis of Lysozyme Crystallization in Varied NaCl and PEG Concentrations. Semester Project Manuscript, University of Houston, Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Ching, C.B. Toward Further Understanding of Lysozyme Crystallization: Phase Diagram, Protein−Protein Interaction, Nucleation Kinetics, and Growth Kinetics. Cryst. Growth Des. 2010, 10, 548–558. [Google Scholar] [CrossRef]
- Ng, J.D.; Lorber, B.; Witz, J.; Théobald-Dietrich, A.; Kern, D.; Giegé, R. The Crystallization of Biological Macromolecules from Precipitates: Evidence for Ostwald Ripening. J. Cryst. Growth 1996, 168, 50–62. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Wu, Z. Machine Learning Modeling and Predictive Control of the Batch Crystallization Process. Ind. Eng. Chem. Res. 2022, 61, 5578–5592. [Google Scholar] [CrossRef]
Lactobacillus brevis ADH | WT | Q207D | T102E | WT (AP) | ||
---|---|---|---|---|---|---|
Crystallization parameters | c0 | [g L−1] | 4.98 0.22 | 4.91 0.28 | 5.05 0.07 | 5.00 0.00 |
ceq | [g L−1] | 0.85 0.04 | 0.85 0.34 | 0.18 0.00 | 1.23 0.00 | |
Y | [%] | 82.86 | 82.65 | 96.43 | 75.33 | |
Logistic parameters cX(t) | cmax,X | [g L−1] | 4.03 | 3.75 | 4.68 | 3.87 |
kX | [h−1] | 0.73 | 1.18 | 23.44 | 0.25 | |
t1/2,X | [h] | 7.70 | 2.48 | 0.23 | 7.84 | |
R2 | [-] | 0.99 | 0.98 | 0.99 | 0.97 | |
Logistic parameters VObs(t) | Vmax | [µm3] | 59,337 | 63,009 | 113,700 | 58,061 |
kV | [h−1] | 0.71 | 1.00 | 8.84 | 0.57 | |
t1/2,V | [h] | 7.85 | 2.3074 | 0.1941 | 8.17 | |
R2 | [-] | 0.98 | 0.84 | 0.55 | 0.98 | |
RMSD | [-] | 0.01 | 0.02 | 0.03 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mentges, J.; Bischoff, D.; Walla, B.; Weuster-Botz, D. In Situ Microscopy with Real-Time Image Analysis Enables Online Monitoring of Technical Protein Crystallization Kinetics in Stirred Crystallizers. Crystals 2024, 14, 1009. https://doi.org/10.3390/cryst14121009
Mentges J, Bischoff D, Walla B, Weuster-Botz D. In Situ Microscopy with Real-Time Image Analysis Enables Online Monitoring of Technical Protein Crystallization Kinetics in Stirred Crystallizers. Crystals. 2024; 14(12):1009. https://doi.org/10.3390/cryst14121009
Chicago/Turabian StyleMentges, Julian, Daniel Bischoff, Brigitte Walla, and Dirk Weuster-Botz. 2024. "In Situ Microscopy with Real-Time Image Analysis Enables Online Monitoring of Technical Protein Crystallization Kinetics in Stirred Crystallizers" Crystals 14, no. 12: 1009. https://doi.org/10.3390/cryst14121009
APA StyleMentges, J., Bischoff, D., Walla, B., & Weuster-Botz, D. (2024). In Situ Microscopy with Real-Time Image Analysis Enables Online Monitoring of Technical Protein Crystallization Kinetics in Stirred Crystallizers. Crystals, 14(12), 1009. https://doi.org/10.3390/cryst14121009