Axial Vibration Control Technique for Crystal Growth from the Melt: Analysis of Vibrational Flows’ Behavior
Abstract
:1. Introduction
2. Numerical Model
2.1. Model of Fluid Motion under the AVC Action
2.2. Material Properties
3. Results
3.1. AVC Flows Velocities
3.2. AVC Thermodynamic Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ünlü, H.; Horing, N.J.M. (Eds.) Progress in Nanoscale and Low-Dimensional Materials and Devices; Topics in Applied Physics; Springer International Publishing: Cham, Switzerland, 2022; Volume 144. [Google Scholar] [CrossRef]
- Available online: https://www.simco-groups.com/market_segment/crystal-growth (accessed on 17 December 2023).
- Rudolph, P. Contributions to the Development of Crystal Growth Technologies. J. Cryst. Growth 2024, 625, 127456. [Google Scholar] [CrossRef]
- Milisavljevic, I.; Wu, Y. Current Status of Solid-State Single Crystal Growth. BMC Mater. 2020, 2, 2. [Google Scholar] [CrossRef]
- Frank-Rotsch, C.; Dropka, N.; Rotsch, P. III Arsenide. In Single Crystals of Electronic Materials: Growth and Properties; Fornari, R., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 181–240. ISBN 9780081020968. [Google Scholar]
- Kearns, J.K. Silicon single crystals. In Single Crystals of Electronic Materials: Growth and Properties; Fornari, R., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 5–56. [Google Scholar]
- Kozhemyakin, G.N. Imaging of Convection in a Czochralski Crucible under Ultrasound Waves. J. Cryst. Growth 2003, 257, 237–244. [Google Scholar] [CrossRef]
- Kozhemyakin, G.N.; Nemets, L.V.; Bulankina, A.A. Simulation of Ultrasound Influence on Melt Convection for the Growth of GaxIn1−xSb and Si Single Crystals by the Czochralski Method. Ultrasonics 2014, 54, 2165–2168. [Google Scholar] [CrossRef] [PubMed]
- Scheel, H.J.; Schulz-Dubois, E.O. Flux Growth of Large Crystals by Accelerated Crucible-Rotation Technique. J. Cryst. Growth 1971, 8, 304–306. [Google Scholar] [CrossRef]
- Zawilski, K.T.; Custodio, M.C.C.; Demattei, R.C.; Feigelson, R.S. Control of Growth Interface Shape Using Vibroconvective Stirring Applied to Vertical Bridgman Growth. J. Cryst. Growth 2005, 282, 236–250. [Google Scholar] [CrossRef]
- Ostrogorsky, A.G.; Riabov, V.; Dropka, N. Interface Control by Rotating Submerged Heater/Baffle in Vertical Bridgman Configuration. J. Cryst. Growth 2018, 498, 269–276. [Google Scholar] [CrossRef]
- Kokh, A.E.; Kononova, N.G. Crystal Growth under Heat Field Rotation Conditions. Solid-State Electron. 2000, 44, 819–824. [Google Scholar] [CrossRef]
- Miller, W.; Frank-Rotsch, C.; Czupalla, M.; Rudolph, P. Numerical Modelling of Czochralski Growth of Quadratic Silicon Crystals by Means of a Travelling Magnetic Field. Cryst. Res. Technol. 2012, 47, 285–292. [Google Scholar] [CrossRef]
- Golyshev, V.; Gonik, M.; Tsvetovsky, V. Problems of Bi4Ge3O12 and Li2B4O7 Single Crystal Growth by Crusibleless Variant of AHP Method. J. Cryst. Growth 1999, 198–199, 501–506. [Google Scholar] [CrossRef]
- Uda, S.; Koizumi, H.; Nozawa, J.; Fujiwara, K. Crystal Growth under External Electric Fields. AIP Conf. Proc. 2014, 1618, 261–264. [Google Scholar] [CrossRef]
- Fadeev, G.N.; Boldyrev, V.S.; Bogatov, N.A.; Nikolaev, A.L. Inhibition of Redox Reactions in a Low-Frequency Field. Dokl. Phys. Chem. 2019, 487, 91–93. [Google Scholar] [CrossRef]
- Avetissov, I.; Sadovskiy, A.; Belov, S.; Khomyakov, A.; Rekunov, K.; Kostikov, V.; Sukhanova, E. Thermodynamic Features of Axial Vibrational Control Technique for Crystal Growth from the Melt. CrystEngComm 2013, 15, 2213–2219. [Google Scholar] [CrossRef]
- Avetissov, I.C.; Sadovskiy, A.P.; Sukhanova, E.A.; Orlova, G.Y.; Belogorokhov, I.A.; Zharikov, E.V. Perfection of NaNO3 Single Crystals Grown by Axial Vibrational Control Technique in Czochralski Configuration. J. Cryst. Growth 2012, 360, 167–171. [Google Scholar] [CrossRef]
- Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I. Potassium-Cobalt Sulphate Crystal Growth Assisted by Low Frequency Vibrations. J. Cryst. Growth 2018, 483, 31–38. [Google Scholar] [CrossRef]
- Avetissov, I.C.; Sukhanova, E.A.; Khomyakov, A.V.; Zinovjev, A.Y.; Kostikov, V.A.; Zharikov, E.V. Simulation and Crystal Growth of CdTe by Axial Vibration Control Technique in Bridgman Configuration. J. Cryst. Growth 2011, 318, 528–532. [Google Scholar] [CrossRef]
- Doye, J.P.K. The Structure, Thermodynamics and Dynamics of Atomic Clusters, Gonville & Caius College. 1996. Available online: http://doye.chem.ox.ac.uk/jon/PhD2/PhD.html (accessed on 27 December 2023).
- Zharikov, E.V. Problems and Recent Advances in Melt Crystal Growth Technology. J. Cryst. Growth 2012, 360, 146–154. [Google Scholar] [CrossRef]
- Zharikov, E.V. Advanced Technologies of Crystal Growth from Melt Using Vibrational Influence. In Crystal Growth Technology: Semiconductors and Dielectrics; Wiley: Hoboken, NJ, USA, 2010; pp. 41–64. [Google Scholar] [CrossRef]
- Nefedov, O.; Dovnarovich, A.; Kostikov, V.; Mozhevitina, E.; Bocharnikov, D.; Avetissov, I. Numerical Simulation of CdTe Crystal Growth Using the Vertical Gradient Freeze Technique Assisted by Axial Low-Frequency Oscillations of the Melt. Crystals 2024, 14, 72. [Google Scholar] [CrossRef]
Parameter | Value, mm |
---|---|
Simulating area length | 100 |
Simulating area height | 100 |
Disk diameter, D | 80 |
Disk thickness, d | 10 |
Edge radius, R | 0.1; 0.2; 0.4; 0.8 |
Distance from the disk to the bottom and top walls | 45 |
Disk oscillation amplitude, A | 0.080–0.500 |
Frequency oscillation, f | 10–30 Hz |
Property | Value | ||
---|---|---|---|
NaNO3 | Ge | CdTe | |
Melting temperature, Tm (K) | 579.95 | 1211.4 | 1369 |
Density, ρ (kg/m3) | 1903 | 5490 | 5661.8 |
Dynamic viscosity, μ (Pa s) | 2.2 × 10−3 | 7.14 × 10−4 | 2.33 × 10−3 |
f, Hz | A, μm | R, mm | I, kg0.5 m1.5 s−1 | v, mm·s−1 |
---|---|---|---|---|
Ge | ||||
10 | 125 | 0.1 | 8.00 | 0.126 |
10 | 200 | 0.1 | 32.77 | 2.240 |
20 | 100 | 0.1 | 16.39 | 0.744 |
20 | 110 | 0.1 | 21.81 | 1.199 |
25 | 80 | 0.1 | 13.11 | 0.535 |
25 | 100 | 0.1 | 25.61 | 1.370 |
25 | 110 | 0.1 | 34.08 | 2.217 |
25 | 125 | 0.1 | 50.01 | 3.635 |
30 | 110 | 0.1 | 49.08 | 3.376 |
25 | 100 | 0.2 | 12.80 | 0.587 |
25 | 100 | 0.4 | 6.40 | 0.096 |
25 | 100 | 0.8 | 3.20 | 0.060 |
25 | 50 | 0.05 | 6.40 | 0.096 |
CdTe | ||||
10 | 125 | 0.1 | 2.49 | 0.064 |
10 | 200 | 0.1 | 10.20 | 0.657 |
10 | 300 | 0.1 | 34.42 | 2.683 |
20 | 100 | 0.1 | 5.10 | 0.217 |
25 | 80 | 0.1 | 4.08 | 0.091 |
25 | 100 | 0.1 | 7.97 | 0.474 |
25 | 125 | 0.1 | 15.56 | 1.114 |
25 | 500 | 0.1 | 996.03 | 24.86 |
25 | 500 | 0.2 | 498.01 | 20.18 |
25 | 500 | 0.4 | 249.01 | 14.55 |
25 | 500 | 0.8 | 124.50 | 8.757 |
NaNO3 | ||||
25 | 500 | 0.1 | 611.57 | 21.67 |
25 | 500 | 0.2 | 305.79 | 16.27 |
25 | 500 | 0.4 | 152.89 | 9.655 |
25 | 500 | 0.8 | 76.45 | 4.857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nefedov, O.; Dovnarovich, A.; Kostikov, V.; Levonovich, B.; Avetissov, I. Axial Vibration Control Technique for Crystal Growth from the Melt: Analysis of Vibrational Flows’ Behavior. Crystals 2024, 14, 126. https://doi.org/10.3390/cryst14020126
Nefedov O, Dovnarovich A, Kostikov V, Levonovich B, Avetissov I. Axial Vibration Control Technique for Crystal Growth from the Melt: Analysis of Vibrational Flows’ Behavior. Crystals. 2024; 14(2):126. https://doi.org/10.3390/cryst14020126
Chicago/Turabian StyleNefedov, Oleg, Alexey Dovnarovich, Vladimir Kostikov, Boris Levonovich, and Igor Avetissov. 2024. "Axial Vibration Control Technique for Crystal Growth from the Melt: Analysis of Vibrational Flows’ Behavior" Crystals 14, no. 2: 126. https://doi.org/10.3390/cryst14020126
APA StyleNefedov, O., Dovnarovich, A., Kostikov, V., Levonovich, B., & Avetissov, I. (2024). Axial Vibration Control Technique for Crystal Growth from the Melt: Analysis of Vibrational Flows’ Behavior. Crystals, 14(2), 126. https://doi.org/10.3390/cryst14020126