{Ca, Eu, Yb}23Cu7Mg4 as a Step towards the Structural Generalization of Rare Earth-Rich Intermetallics
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
- (1)
- Composition restraint—stoichiometries laying along the lines joining the end members;
- (2)
- (3)
- Metric restraint—for hexagonal and rhombohedral representatives a = b≈10 ÷ 11 Å or their multiples.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solokha, P.; De Negri, S.; Pavlyuk, V.; Saccone, A. The novel intermetallic phases TbNiMg and Tb4+xNi2Mg3−x (x = 0.2): Synthesis, crystal structure and peculiarities. Intermetallics 2010, 18, 719–724. [Google Scholar] [CrossRef]
- Freccero, R.; De Negri, S.; Saccone, A.; Solokha, P. Solid state interactions in the La-Au-Mg system: Phase equilibria, novel compounds and chemical bonding. Dalt. Trans. 2020, 49, 12056–12067. [Google Scholar] [CrossRef] [PubMed]
- Steurer, W.; Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, Ohio, USA, 2023. [Google Scholar]
- Pöttgen, R. The Gd4RhIn Type: Crystal Chemistry and Properties. Handb. Phys. Chem. Rare Earths 2020, 58, 1–38. [Google Scholar] [CrossRef]
- Block, T.; Pöttgen, R. Cd3 and Cd4 Clusters in the Rare Earth (RE) Metal-Rich Phases RE10OsCd3 and RE4OsCd. Monatshefte Chem. 2019, 150, 975–982. [Google Scholar] [CrossRef]
- Block, T.; Stein, S.; Heletta, L.; Pöttgen, R. Osmium and magnesium: Structural segregation in the rare earth-rich intermetallics RE4OsMg (RE = La-Nd, Sm) and RE9TMg4 (RE = Gd, Tb). Z. Naturforsch. Sect. B J. Chem. Sci. 2019, 74, 519–525. [Google Scholar] [CrossRef]
- Tuncel, S.; Hermes, W.; Chevalier, B.; Rodewald, U.C.; Pöttgen, R. Ternary Magnesium Compounds RE23Ni7Mg4 (RE = La, Ce, Pr, Nd, Sm) with Pr23Ir7Mg4 Type Structure. Z. Anorg. Allg. Chem. 2008, 634, 2140–2144. [Google Scholar] [CrossRef]
- Tappe, F.; Pöttgen, R. Rare Earth-Rich Cadmium Compounds RE23T7Cd4 (T = Co, Ni, Ru, Rh, Ir, Pt). Z. Naturforsch. Sect. B J. Chem. Sci. 2009, 64, 184–188. [Google Scholar] [CrossRef]
- Linsinger, S.; Eul, M.; Hermes, W.; Hoffmann, R.D.; Pottgen, R. Intermediate-Valent Ce23Ru7Mg4 and RE23Ru7Mg4 (RE = La, Pr, Nd) with Pr23Ir7Mg4-Type Structure. Z. Naturforsch. Sect. B J. Chem. Sci. 2009, 64, 1345–1352. [Google Scholar] [CrossRef]
- Bin, S.J.B.; Fong, K.S.; Chua, B.W.; Gupta, M. Mg-based bulk metallic glasses: A review of recent developments. J. Magnes. Alloys 2022, 10, 899–914. [Google Scholar] [CrossRef]
- Luo, Q.; Gu, Q.F.; Zhang, J.Y.; Chen, S.L.; Chou, K.C.; Li, Q. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound. Sci. Rep. 2015, 5, 15385. [Google Scholar] [CrossRef] [PubMed]
- Solokha, P.; Freccero, R.; De Negri, S. Architecture of new {Ca, Eu, Yb}4CuMg complex intermetallics based on polyicosahedral clusters. J. Solid State Chem. 2023, 328, 124353. [Google Scholar] [CrossRef]
- Rodewald, U.C.; Tuncel, S.; Chevalier, B.; Pöttgen, R. Rare Earth Metal-Rich Magnesium Compounds RE4IrMg (RE = Y, La, Pr, Nd, Sm, Gd, Tb, Dy) and RE23Ir7Mg4 (RE = La, Ce, Pr, Nd). Z. Anorg. Allg. Chem. 2008, 634, 1011–1016. [Google Scholar] [CrossRef]
- De Negri, S.; Saccone, A.; Rogl, P.; Giester, G. The ternary system Yb–Cu–Mg: Isothermal section at 400 °C in the range from 0 to 67 at.% Cu. Intermetallics 2008, 16, 1285–1291. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Bruker. APEX4, v2022.10-0; Bruker: Billerica, MA, USA, 2022. [Google Scholar]
- Bruker. SAINT, v8.30; Bruker: Billerica, MA, USA, 2012. [Google Scholar]
- Bruker. XPREP, v2014/2; Bruker: Billerica, MA, USA, 2014. [Google Scholar]
- Bruker. SADABS, v2016/2; Bruker: Billerica, MA, USA, 2016. [Google Scholar]
- Sheldrick, G.M. SHELXL-2019/1; Program for the Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 2019. [Google Scholar]
- Emsley, J. The Elements; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Galadzhun, Y.V.; Hoffmann, R.D.; Heletta, L.; Horiacha, M.; Pöttgen, R. The Lutetium-rich Indide Lu13Ni6In. Z. Anorg. Allg. Chem. 2018, 644, 1513–1518. [Google Scholar] [CrossRef]
- Villars, P.; Daams, J.L.C. Atomic-environment classification of the chemical elements. J. Alloys Compd. 1993, 197, 177–196. [Google Scholar] [CrossRef]
- Merlo, F.; Fornasini, M.L. Volume effects in rare earth intermetallic compounds. J. Alloys Compd. 1993, 197, 213–216. [Google Scholar] [CrossRef]
- De Negri, S.; Giovannini, M.; Saccone, A. Constitutional properties of the La–Cu–Mg system at 400 °C. J. Alloys Compd. 2007, 427, 134–141. [Google Scholar] [CrossRef]
- De Negri, S.; Solokha, P.; Saccone, A.; Pavlyuk, V. The Y-Cu-Mg system in the 0–66.7 at.% Cu concentration range: The isothermal section at 400 °C. Intermetallics 2009, 17, 614–621. [Google Scholar] [CrossRef]
- De Negri, S.; Solokha, P.; Pavlyuk, V.; Saccone, A. The isothermal section of the La-Ag-Mg phase diagram at 400 °C. Intermetallics 2011, 19, 671–681. [Google Scholar] [CrossRef]
- Kopský, V.; Litvin, D.B. (Eds.) International Tables for Crystallography Volume E: Subperiodic Groups; International Union of Crystallography: Chester, UK, 2010. [Google Scholar] [CrossRef]
Formula | Ca22.93 (4)Cu7Mg4.07 (4) | Eu23Cu7Mg4 |
EDXS composition | Ca68.2Cu19.8Mg12.0 | Eu66.2Cu19.2Mg14.6 |
Depositing CSD-code | 2266948 | 2266951 |
Formula weight (g/mol) | 1463.86 | 4037.10 |
Space group | P63/mmc (194) | |
Pearson symbol-protoype, Z | hP68-Yb23Cu7Mg4, 2 | |
a, Å | 10.236 (2) | 10.659 (2) |
c, Å | 23.413 (5) | 24.379 (5) |
V, Å3 | 2124.5 (9) | 2398.7 (10) |
Calc. density (g·cm−3) | 2.29 | 5.59 |
Absorption coefficient (μ, mm−1) | 6.27 | 32.61 |
Theta range (°) | 2.3 ≤ θ ≤ 33.2 | 2.8 ≤ θ ≤ 30.5 |
Index ranges h, k, l | −15 ≤ h ≤ 11 −15 ≤ k ≤ 14 −36 ≤ l ≤ 35 | −15 ≤ h ≤ 15 −15 ≤ k ≤ 13 −34 ≤ l ≤ 34 |
Data/parameters | 1592/41 | 1435/40 |
GOF | 1.16 | 0.98 |
Rint/Rsym | 0.1014/0.045 | 0.083/0.018 |
R1/wR2 (I > 2σ(I)) | 0.0403/0.0932 | 0.0259/0.0454 |
R1/wR2 (all data) | 0.0864/0.1320 | 0.0445/0.0524 |
Max diff. peak and hole (e−/Å3) | 1.19 and −1.40 | 2.59 and −1.36 |
Atom | Site | Atomic Coordinates | Ueq [Å2] | ||
---|---|---|---|---|---|
x/a | y/b | z/c | |||
Ca22.93(4)Cu7Mg4.07(4) | |||||
Ca1 | 4f | 1/3 | 2/3 | 0.61757 (8) | 0.0180 (4) |
Ca2 | 12k | 0.20651 (6) | 0.4130 (1) | 0.03215 (5) | 0.0209 (2) |
Ca3 | 6h | 0.12164 (9) | 0.24328 (9) | 1/4 | 0.0211 (3) |
Ca4 | 12k | 0.12389 (6) | 0.2478 (1) | 0.61877 (5) | 0.0219 (2) |
Ca5 | 12k | 0.53951 (6) | 0.07902 (6) | 0.66824 (5) | 0.0217 (2) |
Cu1 | 12k | 0.52555 (4) | 0.05110 (4) | 0.04959 (3) | 0.0243 (2) |
Cu2 | 2c | 1/3 | 2/3 | 1/4 | 0.0277 (4) |
Mg1 (Ca) SOF(Mg) = 0.93 | 2a | 0 | 0 | 0 | 0.0234 (17) |
Mg2 | 6h | 0.7706 (1) | 0.5412 (3) | 1/4 | 0.0190 (5) |
Eu23Cu7Mg4 | |||||
Eu1 | 4f | 1/3 | 2/3 | 0.61610 (3) | 0.0221 (2) |
Eu2 | 12k | 0.20717 (3) | 0.41434 (5) | 0.03062 (2) | 0.0244 (1) |
Eu3 | 6h | 0.12316 (4) | 0.24632 (4) | 1/4 | 0.0264 (1) |
Eu4 | 12k | 0.12549 (3) | 0.25099 (5) | 0.61768 (2) | 0.0277 (1) |
Eu5 | 12k | 0.53839 (2) | 0.07678 (2) | 0.66768 (2) | 0.0240 (1) |
Cu1 | 12k | 0.52492 (6) | 0.04984 (4) | 0.04907 (6) | 0.0308 (3) |
Cu2 | 2c | 1/3 | 2/3 | 1/4 | 0.0311 (6) |
Mg1 | 2a | 0 | 0 | 0 | 0.0255 (6) |
Mg2 | 6h | 0.76850 (2) | 0.53700 (5) | 1/4 | 0.0254 (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solokha, P.; Freccero, R.; De Negri, S. {Ca, Eu, Yb}23Cu7Mg4 as a Step towards the Structural Generalization of Rare Earth-Rich Intermetallics. Crystals 2024, 14, 156. https://doi.org/10.3390/cryst14020156
Solokha P, Freccero R, De Negri S. {Ca, Eu, Yb}23Cu7Mg4 as a Step towards the Structural Generalization of Rare Earth-Rich Intermetallics. Crystals. 2024; 14(2):156. https://doi.org/10.3390/cryst14020156
Chicago/Turabian StyleSolokha, Pavlo, Riccardo Freccero, and Serena De Negri. 2024. "{Ca, Eu, Yb}23Cu7Mg4 as a Step towards the Structural Generalization of Rare Earth-Rich Intermetallics" Crystals 14, no. 2: 156. https://doi.org/10.3390/cryst14020156
APA StyleSolokha, P., Freccero, R., & De Negri, S. (2024). {Ca, Eu, Yb}23Cu7Mg4 as a Step towards the Structural Generalization of Rare Earth-Rich Intermetallics. Crystals, 14(2), 156. https://doi.org/10.3390/cryst14020156