Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spray Condition and Deposition State
3.1.1. Surface Deposition
3.1.2. Internal Deposition
3.2. Characterization of Deposited Layer
3.2.1. Elemental Analysis
3.2.2. High-Magnification TEM Image
3.3. Spray Application on Three-Layer Membrane
3.3.1. Internal Observation
3.3.2. Effect of Spray Application on Thermal Stability
3.3.3. Effect of Spray Application on Resistance
3.3.4. Model of Improved Thermal Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haleem, A.M.A.; Ichimura, M. Electrochemical deposition of aluminum oxide thin films from aqueous baths. Mater. Lett. 2014, 130, 26–28. [Google Scholar] [CrossRef]
- Lale, A.; Scheid, E.; Cristiano, F.; Datas, L.; Reig, B.; Launay, J.; Temple-Boyer, P. Study of aluminium oxide thin films deposited by plasma-enhanced atomic layer deposition from tri-methyl-aluminium and dioxygen precursors: Investigation of interfacial and structural properties. Thin Solid Films 2018, 666, 20–27. [Google Scholar] [CrossRef]
- Pugliese, A.; Shyam, B.; Repa, G.M.; Nguyen, A.H.; Mehta, A.; Webb, E.B., III; Fredin, L.A.; Strandwitz, N.C. Atomic-Layer-Deposited Aluminum Oxide Thin Films Probed with X-ray Scattering and Compared to Molecular Dynamics and Density Functional Theory Models. ACS Omega 2022, 7, 41033–41043. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, X.; Cao, Z.; Chen, G. Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy 2016, 22, 301–309. [Google Scholar] [CrossRef]
- Liang, X.; Yang, Y.; Jin, X.; Huang, Z.; Kang, F. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 2015, 493, 1–7. [Google Scholar] [CrossRef]
- Qi, S.; Porotnikova, N.M.; Ananyev, M.V.; Kuzmin, A.V.; Eremin, V.A.; Pankratov, A.A.; Molchanova, N.G.; Reznitskikh, O.G.; Farlenkov, A.S.; Vovkotrub, E.G.; et al. High-temperature glassy-ceramic sealants SiO2—Al2O3—BaO—MgO and SiO2—Al2O3—ZrO2—CaO—Na2O for solid oxide electrochemical devices. Trans. Nonferrous Met. Soc. China 2016, 26, 2916–2924. [Google Scholar] [CrossRef]
- Ananchenko, D.V.; Nikiforov, S.V.; Kuzovkov, V.N.; Popov, A.I.; Ramazanova, G.R.; Batalov, R.I.; Bayazitov, R.M.; Novikov, H.A. Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam, Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam. Nucl. Instruments Methods Phys. Res. Sect. B 2020, 466, 1–7. [Google Scholar] [CrossRef]
- Kumar, N.A.P.K.; Leonard, K.J.; Jellison, G.E.; Snead, L.L. High-Dose Neutron Irradiation Performance of Dielectric Mirrors. Fusion Sci. Technol. 2015, 67, 771–783. [Google Scholar] [CrossRef]
- Lin, S.-C.; Wang, C.-C.; Tien, C.-L.; Tung, F.-C.; Wang, H.-F.; Lail, S.-H. Fabrication of Aluminum Oxide Thin-Film Devices Based on Atomic Layer Deposition and Pulsed Discrete Feed Method. Micromachines 2023, 14, 279. [Google Scholar] [CrossRef]
- Rabha, M.B.; Salem, M.; El Khakani, M.A.; Bessais, B.; Gaidi, M. Monocrystalline silicon surface passivation by Al2O3/porous silicon combined treatment. Mater. Sci. Eng. B 2013, 178, 695–697. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, L.; Wang, X.; Yub, Y.; Mutzke, A. Effect of bias voltage on microstructure and optical properties of Al2O3 thin films prepared by twin targets reactive high power impulse magnetron sputtering. Vacuum 2019, 166, 88–96. [Google Scholar] [CrossRef]
- Jo, J.-W.; Kim, K.-H.; Kim, J.; Ban, S.G.; Kim, Y.-H.; Park, S.K. High-Mobility and Hysteresis-Free Flexible Oxide Thin-Film Transistors and Circuits by Using Bilayer Sol–Gel Gate Dielectrics. ACS Appl. Mater. Interfaces 2018, 10, 2679–2687. [Google Scholar] [CrossRef]
- Dhonge, B.P.; Mathews, T.; Sundari, S.T.; Thinaharan, C.; Kamruddin, M.; Dash, S.; Tyagi, A.K. Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films. Appl. Surf. Sci. 2011, 258, 1091–1096. [Google Scholar] [CrossRef]
- Aguilar-Frutis, M.; Garcia, M.; Falcony, C. Optical and electrical properties of aluminum oxide films deposited by spray pyrolysis. Appl. Phys. Lett. 1998, 72, 1700–1702. [Google Scholar] [CrossRef]
- Falcony, C.; Aguilar-Frutis, M.A.; García-Hipólito, M. Spray Pyrolysis Technique; High-K Dielectric Films and Luminescent Materials: A Review. Micromachines 2018, 9, 414. [Google Scholar] [CrossRef]
- Workie, A.B.; Ningsih, H.S.; Shih, S.-J. A comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications. J. Anal. Appl. Pyrolysis 2023, 170, 105915. [Google Scholar] [CrossRef]
- Avvaru, B.; Patil, M.N.; Gogate, P.R.; Pandit, A.B. Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics 2006, 44, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Khatibani, A.B.; Rozati, S.M. Optical and morphological investigation of aluminium and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber. Bull. Mater. Sci. 2015, 38, 319–326. [Google Scholar] [CrossRef]
- Patil, P.S. Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 1999, 59, 185–198. [Google Scholar] [CrossRef]
- Kate, R.S.; Pathan, H.M.; Kalubarme, R.; Kale, B.B.; Deokate, R.J. Spray pyrolysis: Approaches for nanostructured metal oxide films in energy storage application. J. Energy Storage 2022, 54, 105387. [Google Scholar] [CrossRef]
- Maho, A.; Nayak, S.; Gillissen, F.; Cloots, R.; Rougier, A. Film Deposition of Electrochromic Metal Oxides through Spray Coating: A Descriptive Review. Coatings 2023, 13, 1879. [Google Scholar] [CrossRef]
- Yoshino, K.; Takemoto, Y.; Oshima, M.; Toyota1, K.; Inaba, K.; Haga, K.; Tokudome, K. Low-Temperature Growth of ZnO Films by Spray Pyrolysis. Jpn. J. Appl. Phys. 2011, 50, 040207. [Google Scholar] [CrossRef]
- Imai, M.; Watanabe, M.; Mochihara, A.; Tominaga, H.; Yoshino, K.; Shen, Q.; Toyoda, T.; Hayase, S. Atmospheric growth of ZnO films deposited by spray pyrolysis using diethylzinc solution. J. Cryst. Growth 2017, 468, 473–476. [Google Scholar] [CrossRef]
- Imai, M.; Kubota, T.; Miyazawa, A.; Aoki, M.; Mori, H.; Komaki, Y.; Yoshino, K. Ultra-Thin Layer Inside Separator Deposited by Spray Pyrolysis Using Methylaluminoxane Solution. Cryst. Res. Technol. 2022, 58, 2200203. [Google Scholar] [CrossRef]
- McAllister, J.A.; Farrell, A.E. Electricity consumption by battery-powered consumer electronics: A household-level survey. Energy 2007, 32, 1177–1184. [Google Scholar] [CrossRef]
- Agrawal, R.; Pandey, G. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D Appl. Phys. 2008, 41, 223001. [Google Scholar] [CrossRef]
- Fu, D.; Luan, B.; Argue, S.; Bureau, M.N.; Davidson, I.J. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J. Power Sources 2012, 206, 325–333. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Kim, Y. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Lagadec, M.F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25. [Google Scholar] [CrossRef]
- Ali, S.; Tan, C.; Waqas, M.; Lv, W.; Wei, Z.; Wu, S.; Al-Bogami, A.S.; Lu, J.; Amine, K. Highly Efficient PVDF-HFP/Colloidal Alumina Composite Separator for High-Temperature Lithium-Ion Batteries. Adv. Mater. Interfaces 2018, 5, 1701147. [Google Scholar] [CrossRef]
- Luiso, S.; Fedkiw, P. Lithium-ion battery separators: Recent developments and state of art. Curr. Opin. Electrochem. 2020, 20, 99–107. [Google Scholar] [CrossRef]
- Jeong, H.-S.; Kim, D.-W.; Jeong, Y.U.; Lee, S.-Y. Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J. Power Sources 2010, 195, 6116–6121. [Google Scholar] [CrossRef]
- Choi, J.-A.; Kim, S.H.; Kim, D.-W. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 2010, 195, 6192–6196. [Google Scholar] [CrossRef]
- Cai, H.; Yang, G.; Meng, Z.; Yin, X.; Zhang, H.; Tang, H. Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al2O3-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries. Polymers 2019, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; You, T.-S.; Lee, S.-M.; Esken, D.; Dehe, D.; Huang, Y.-C.; Kim, D.-W. Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety. J. Power Sources 2020, 472, 228519. [Google Scholar] [CrossRef]
- Chen, E.Y.-X.; Marks, T.J. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure−Activity Relationships. Chem. Rev. 2000, 100, 1391–1434. [Google Scholar] [CrossRef]
- Wood, D.L.; Li, J.; Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 2015, 275, 234–242. [Google Scholar] [CrossRef]
- Momma, T.; Matsunaga, M.; Mukoyama, D.; Osaka, T. Ac impedance analysis of lithium ion battery under temperature control. J. Power Sources 2012, 216, 304–307. [Google Scholar] [CrossRef]
- Gunter, F.J.; Habedank, J.B.; Schreiner, D.; Neuwirth, T.; Gilles, R.; Reinhart, G. Introduction to Electrochemical Impedance Spectroscopy as a Measurement Method for the Wetting Degree of Lithium-Ion Cells. J. Electrochem. Soc. 2018, 165, A3249–A3256. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272. [Google Scholar] [CrossRef]
- Tsirelson, V.; Antipin, M.; Gerr, R.; Ozerov, R.; Struchkov, Y. Ruby structure peculiarities derived from X-ray diffraction data. Localization of chromium atoms and electron deformation density. Phys. Status Solidi A 1985, 87, 425–433. [Google Scholar] [CrossRef]
- Li, Z.; Fredin, L.A.; Tewari, P.; DiBenedetto, S.A.; Lanagan, M.T.; Ratner, M.A.; Marks, T.J. In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites. Chem. Mater. 2010, 22, 5154–5164. [Google Scholar] [CrossRef]
- Teixeira, V.E.; Livotto, P.R. The mechanism of the reaction between MAO and TMA: DFT study of the electronic structure and characterization of transition states for [AlOMe]6, [AlOMe]9 and [AlOMe]16 cages. J. Mol. Graph. Model. 2020, 99, 107626. [Google Scholar] [CrossRef]
- Love, C.T. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators. J. Power Sources 2011, 196, 2905–2912. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–169. [Google Scholar] [CrossRef]
Element | After Spray | As Received |
---|---|---|
C | 91.8 | 98.8 |
Al | 3.1 | 0.0 |
O | 5.1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, M.; Kubota, T.; Miyazawa, A.; Aoki, M.; Mori, H.; Komaki, Y.; Yoshino, K. Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application. Crystals 2024, 14, 195. https://doi.org/10.3390/cryst14020195
Imai M, Kubota T, Miyazawa A, Aoki M, Mori H, Komaki Y, Yoshino K. Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application. Crystals. 2024; 14(2):195. https://doi.org/10.3390/cryst14020195
Chicago/Turabian StyleImai, Masato, Tadahiko Kubota, Atsushi Miyazawa, Masahiro Aoki, Haruna Mori, Yuta Komaki, and Kenji Yoshino. 2024. "Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application" Crystals 14, no. 2: 195. https://doi.org/10.3390/cryst14020195
APA StyleImai, M., Kubota, T., Miyazawa, A., Aoki, M., Mori, H., Komaki, Y., & Yoshino, K. (2024). Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application. Crystals, 14(2), 195. https://doi.org/10.3390/cryst14020195