Hybrid Joining of Dissimilar Thin Metallic Sheets—Mechanical Joining and Adhesive Bonding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
- DC04—extra-deep-drawing non-galvanized low-carbon cold-rolled steel for car body production, hereinafter DC.
- TL 1550-220 + Z—zinc-galvanized fine-grained high-strength low-alloy steel with increased cold formability, hereinafter TL.
- EN AW-6082 T6 (AlSi1MgMn)—precipitation-hardened aluminum alloy AlSi1MgMn with good weldability by MIG and TIG technology, hereinafter Al.
2.2. Methodology for Measuring Surface Roughness
2.3. Joint Making by Thermal Drilling Technology
2.4. Joint Making by Adhesive Bonding
2.5. Hybrid Joint Making by Adhesive Bonding and Thermal Drilling
2.6. Testing of Test Assemblies (Joints)
- Fmax—maximum tensile shear force in N.
- s Fmax—displacement at the tensile shear force Fmax Fmax in mm.
- 0.3 Fmax—limit introduced to reduce the tensile shear test time because the area under the force curve following 0.3 Fmax does not contribute significantly to the dissipated energy in N.
- s 0.3Fmax—displacement at 0.3 Fmax in mm.
- Dissipated energy W in J up to fracture, corresponding to the area under the load curves. This characteristic is important for the safety of the frame upon impact. It is given by relation (1):
3. Results
3.1. Results of Surface Roughness Evaluation
3.2. Results of Evaluation of Joints Formed by Thermal Drilling
3.3. Results of Evaluation of Joints Formed by Adhesive Bonding
3.4. Results of Evaluation of Hybrid Joints Formed by Bonding and Thermal Drilling
4. Discussion
5. Conclusions
- The thermal drilling technology can be used for the mechanical form-fitting of thin plates by forming a pair of nested concentric bushings capable of carrying a certain level of load.
- Hybrid joints formed by bonding and thermal drilling have a higher load-bearing capacity thanks to the adhesive; the bushing formed by thermal drilling helps to increase the amount of energy absorbed when the joint breaks, which is important from the point of view of structural safety.
- The formation of hybrid joints is only meaningful if the cohesion of the adhesive used does not exceed the yield strength of the weaker of the pair of materials being joined.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Messler, R.W., Jr. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology, 1st ed.; Elsevier Inc.: Exeter, UK, 2004; p. 815. [Google Scholar]
- Messler, R.W. Joining of Advanced Materials, 1st ed.; Elsevier Inc.: Boston, MA, USA, 1993; p. 539. [Google Scholar]
- EAA Aluminium Automotive Manual. 10. Hybrid Joining Techniques. Available online: https://european-aluminium.eu/blog/aluminium-automotive-manual/ (accessed on 30 August 2021).
- Alves, L.M.; Dias, E.J.; Martins, P.A.F. Joining sheet panels to thin-walled tubular profiles by tube end forming. J. Clean. Prod. 2011, 19, 712–719. [Google Scholar] [CrossRef]
- Novák, P.; Michalcová, A.; Marek, I.; Mudrová, M.; Saksl, K.; Bednarčík, J.; Zikmund, P.; Vojtěch, D. On the formation of intermetallics in Fe-Al system—An in situ XRD study. Intermetallics 2013, 32, 127–136. [Google Scholar] [CrossRef]
- Kelly, G. Load transfer in hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2005, 69, 35–43. [Google Scholar] [CrossRef]
- El Zaroug, M.; Kadioglu, F.; Demiral, M.; Saad, D. Experimental and numerical investigation into strength of bolted, bonded and hybrid single lap joints: Effects of adherend material type and thickness. Int. J. Adhes. Adhes. 2018, 87, 130–141. [Google Scholar] [CrossRef]
- Hoang-Ngoc, C.T.; Paroissien, E. Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive. Int. J. Adhes. Adhes. 2010, 30, 117–129. [Google Scholar] [CrossRef]
- Shalamov, P.V.; Kulygina, I.A.; Yaroslavova, E.N. ANSYS Software-based Study of Thermal Drilling Process. Proc. Eng. 2016, 150, 746–752. [Google Scholar] [CrossRef]
- Krasauskas, P. Experimental and statistical investigation of thermo mechanical friction drilling process. Mechanika 2011, 17, 681–686. [Google Scholar] [CrossRef]
- Kumar, R.; Rajesh, N.; Hynes, J.; Pruncu, C.I.; Angela, J.; Sujana, J. Multi-objective optimization of green technology thermal drilling process using grey-fuzzy logic method. J. Clean. Prod. 2019, 236, 117711. [Google Scholar] [CrossRef]
- Kumar, R.; Rajesh Jesudoss Hynes, N. Thermal drilling processing on sheet metals: A review. Int. J. Lightweight Mat. Manuf. 2019, 2, 193–205. [Google Scholar] [CrossRef]
- Graf, M.; Sikora, P.S.; Roider, S.C. Macroscopic modeling of thin-walled aluminium-steel connections by flow drill screws. Thin-Walled Struct. 2018, 130, 286–296. [Google Scholar] [CrossRef]
- Raju, B.P.; Swamy, M.K. Finite element simulation of a friction drilling process using deform-3D. Int. J. Eng. Res. App. 2012, 2, 716–721. [Google Scholar]
- Miller, S.F.; Tao, J.; Shih, A.J. Friction drilling of cast metals. Int. J. Mach. Tools Manuf. 2006, 46, 1526–1535. [Google Scholar] [CrossRef]
- Miller, S.F.; Li, R.; Wang, H.; Shih, A.J. Experimental and numerical analysis of the friction drilling process. J. Manuf. Sci. Eng. 2006, 123, 802–810. [Google Scholar] [CrossRef]
- Demir, Z. Experimental Investigation of A7075-T651 Aluminum Alloy and St37 Steel Material Punching by Frictional Drilling Method. Ph.D. Thesis, Firat University, Elazığ, Turkey, 2012. [Google Scholar]
- Özek, C.; Demir, Z. Investigation of the Optimum Rotation Speed and Progress Ratio in the Friction Drilling of St37 Steel. In Proceedings of the 3rd National Design Manufacturing and Analysis Congress, Balıkesir, Turkey, 29–30 November 2012. [Google Scholar]
- Shalamov, V.P.; Pivtsaeva, M.; Chvanova, A.; Shamgunov, A. Use of combined tools to reduce axial force during thermal drilling. Mater. Today Proc. 2021, 38, 1931–1935. [Google Scholar] [CrossRef]
- El-Bahloul, S.A.; El-Shourbagy, H.E.; El-Midany, T.T. Optimization of thermal friction drilling process based on Taguchi method and fuzzy logic technique. Int. J. Sci. Eng. Appl. 2015, 4, 55–59. [Google Scholar] [CrossRef]
- Kaya, M.T.; Beylergil, B.; Akyildiz, H.K. An experimental study on friction drilling of St12 steel Trans. Canad. Soc. Mech. Eng. 2014, 38, 319–329. [Google Scholar] [CrossRef]
- Ku, W.L.; Hung, C.L.; Lee, S.M.; Chow, H.M. Optimization in thermal friction drilling for SUS 304 stainless steel. Int. J. Adv. Manuf. Tech. 2011, 53, 935–944. [Google Scholar] [CrossRef]
- Nardi, D.; López de Lacalle, L.N.; Lamikiz, A. Friction Drilling of Galvanized Dual Phase Steels. Rev. Metal. 2012, 48, 13–23. [Google Scholar] [CrossRef]
- Schmerler, R.; Rothe, F. Hybrid Joining Using the Flow Drill Technology. Germany. 2020. Available online: https://www.researchgate.net/publication/341616091_Hybridfugen_durch_Fliesslochformen_Hybrid_joining_using_the_flow_drill_technology#fullTextFileContent (accessed on 17 November 2019).
- Guzanová, A.; Janoško, E.; Draganovská, D.; Vrabeľ, M.; Tomáš, M.; Horňak, P.; Vojtko, M.; Veligotskyi, N. Investigation of Applicability Flowdrill Technology for Joining Thin-Walled Metal Sheets. Metals 2022, 12, 540. [Google Scholar] [CrossRef]
- Banea, M.D.; Rosioara, M.; Carbas, R.J.C.; da Silva, L.F.M. Multi-material adhesive joints for automotive industry. Compos. B Eng. 2018, 151, 71–77. [Google Scholar] [CrossRef]
- Brockmann, W.; Geiß, P.L.; Klingen, J.; Schröder, B. Adhesive Bonding, Materials, Applications and Technology; WILEY-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2009; p. 435. [Google Scholar]
- Adams, R.D. Adhesive Bonding. Science Technology and Applications; Woodhead Publishing Limited: Oxford, UK, 2010; p. 528. [Google Scholar]
- DiBella, G.; Galtieri, G.; Pollicino, E.; Borsellino, C. Mechanical characterization of adhesive joints with dissimilar substrates for marine applications. Int. J. Adhes. Adhes. 2013, 41, 33–40. [Google Scholar] [CrossRef]
- daSilva, L.F.M.; João, M.; Lopes, C.Q. Joint strength optimization by the mixed-adhesive technique. Int. J. Adhes. Adhes. 2009, 29, 509–514. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; das Neves, P.J.C.; Adams, R.D.; Spelt, J.K. Analytical models of adhesively bonded joints—Part I: Literature survey. Int. J. Adhes. Adhes. 2009, 29, 319–330. [Google Scholar] [CrossRef]
- Campilho, R.D.S.G.; Banea, M.D.; Neto, J.A.B.P.; da Silva, L.F.M. Modelling adhesive joints with cohesive zone models: Effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Landrock, A.H. Adhesives Technology Handbook; Elsevier: Amsterdam, The Netherlands, 2015; p. 399. [Google Scholar]
- Campilho, R.D.S.G.; Pinto, A.M.G.; Banea, M.D.; da Silva, L.F.M. Optimization study of hybrid spot-welded/bonded single-lap joints. Int. J. Adhes. Adhes. 2012, 37, 86–95. [Google Scholar] [CrossRef]
- ISO 12996:2013; Mechanical Joining—Destructive Testing of Joints—Specimen Dimensions and Test Procedure for Tensile Shear Testing of Single Joints. European Committee for Standardization: Brussels, Belgium, 2013.
- ISO 6507-1:2023; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. European Committee for Standardization: Brussels, Belgium, 2023.
- Schreijäg, S. Microstructure and Mechanical Behavior of Deep Drawing DC04 Steel at Different Length Scales; KIT Scientific Publishing: Karlsruhe, Germany, 2013; p. 188. Available online: https://www.ksp.kit.edu/site/books/m/10.5445/KSP/1000032165/ (accessed on 27 November 2023).
- Asati, B.; Shajan, N.; Akhil Kishore, V.T.; Arora, K.S.; Narayanan, R.G. A comparative investigation on self-piercing riveting and resistance spot welding of automotive grade dissimilar galvanized steel sheets. Int. J. Adv. Manuf. Technol. 2022, 123, 1079–1097. [Google Scholar] [CrossRef]
- Fujda, M.; Sláma, P. Thermal stability of the ultrafine grained EN AW 6082 aluminium alloy. Kov. Mater. 2013, 51, 117–122. [Google Scholar] [CrossRef]
Material | C | Mn | Si | P | S | Al | Nb | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|
DC | 0.040 | 0.25 | 0.009 | 0.008 | balance | ||||
TL | 0.1 | 1.0 | 0.5 | 0.08 | 0.03 | 0.015 | 0.1 | 0.15 | balance |
Material | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
Al | 1.0 | 0.4 | 0.06 | 0.44 | 0.7 | 0.02 | 0.08 | 0.03 | balance |
Material | Re [MPa] | Rm [MPa] | A80 [%] | Zn Layer [g/m2] | r | n |
---|---|---|---|---|---|---|
DC | 197 | 327 | 39.0 | - | 1.900 | 0.220 |
TL | 292 | 373 | 34.0 | 104 | 1.350 | 0.190 |
Re [MPa] | Rm [MPa] | A50 [%] | ||||
Al | 295 | 344 | 14 |
Teroson RB 5197 | Teroson EP 5090 | |
---|---|---|
Base | rubber | epoxy |
Color | black | purple/blue |
E-modulus [GPa] | 0.880 | 2 |
Tensile strength [MPa] | 12 | 35 |
Shear strength at 20 °C [MPa] | >15 | >30 |
Elongation at break [%] | 10 | |
Poisson’s ratio | 0.4 | |
Layer thickness [mm] | 0.2 | |
In-service temperature range [°C] | −40 to +90 | |
Curing conditions | 25 min, 175 °C |
Ra [µm] | Rz [µm] | RSm [µm] | RPc [Peaks per cm] | |
---|---|---|---|---|
DC | 1.00 | 5.15 | 287 | 35 |
TL | 1.25 | 6.54 | 151 | 67 |
Al | 0.15 | 1.04 | 189 | 53 |
Fmax [kN] | s Fmax [mm] | 0.3 Fmax [N] | s 0.3Fmax [mm] | W [J] | |
---|---|---|---|---|---|
DC-Al | 1.97 ± 0.21 | 0.515 | 0.59 | 1.56 | 2.06 ± 0.16 |
TL-Al | 2.14 ± 0.18 | 0.643 | 0.64 | 1.41 | 2.40 ± 0.25 |
Material Combination | Adhesive | State | Fmax [kN] | s Fmax [mm] | 0.3 Fmax [N] | s 0.3Fmax [mm] | W [J] |
---|---|---|---|---|---|---|---|
DC-Al | RB | as joined | 4.11 ± 0.62 | 0.49 | 1.23 | 0.73 | 1.78 ± 0.27 |
after CT | 5.98 ± 0.31 | 0.66 | 1.79 | 0.75 | 2.63 ± 0.8 | ||
EP | as joined | 10.31 ± 1.50 | 6.06 | 3.09 | 6.88 | 61.76 ± 2.2 | |
after CT | 10.10 ± 1.12 | 5.13 | 3.03 | 5.8 | 50.81 ± 4.4 | ||
TL-Al | RB | as joined | 10.48 ± 0.86 | 1.06 | 3.15 | 1.11 | 6.75 ± 0.31 |
after CT | 9.79 ± 0.52 | 1.04 | 2.94 | 1.07 | 6.16 ± 0.71 | ||
EP | as joined | 13.33 ± 1.14 | 5.37 | 3.99 | 5.57 | 65.74 ± 2.7 | |
after CT | 13.27 ± 1.62 | 6.26 | 3.98 | 6.43 | 76.42 ± 5.1 |
Material Combination | Adhesive | State | Fmax [kN] | s Fmax [mm] | 0.3 Fmax [N] | s 0.3Fmax [mm] | W [J] |
---|---|---|---|---|---|---|---|
DC-Al | RB | as joined | 4.35 ± 0.24 | 0.47 | 1.31 | 1.25 | 4.41 ± 0.3 |
after CT | 6.16 ± 0.42 | 0.59 | 1.85 | 1.1 | 5.49 ± 0.9 | ||
EP | as joined | 9.78 ± 0.45 | 8.46 | 2.94 | 9.96 | 85.72 ± 4.5 | |
after CT | 9.47 ± 0.58 | 6.13 | 2.84 | 6.97 | 55.53 ± 3.2 | ||
TL-Al | RB | as joined | 5.66 ± 0.16 | 0.53 | 1.69 | 1.29 | 4.98 ± 0.31 |
after CT | 6.64 ± 0.39 | 0.60 | 1.99 | 1.48 | 5.39 ± 0.7 | ||
EP | as joined | 13.36 ± 0.73 | 4.59 | 4.00 | 4.92 | 56.05 ± 2.9 | |
after CT | 13.27 ± 0.96 | 4.75 | 3.98 | 5.10 | 58.64 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzanová, A.; Draganovská, D.; Brezinová, J.; Tomáš, M.; Veligotskyi, N.; Kender, Š. Hybrid Joining of Dissimilar Thin Metallic Sheets—Mechanical Joining and Adhesive Bonding. Crystals 2024, 14, 220. https://doi.org/10.3390/cryst14030220
Guzanová A, Draganovská D, Brezinová J, Tomáš M, Veligotskyi N, Kender Š. Hybrid Joining of Dissimilar Thin Metallic Sheets—Mechanical Joining and Adhesive Bonding. Crystals. 2024; 14(3):220. https://doi.org/10.3390/cryst14030220
Chicago/Turabian StyleGuzanová, Anna, Dagmar Draganovská, Janette Brezinová, Miroslav Tomáš, Nikita Veligotskyi, and Štefan Kender. 2024. "Hybrid Joining of Dissimilar Thin Metallic Sheets—Mechanical Joining and Adhesive Bonding" Crystals 14, no. 3: 220. https://doi.org/10.3390/cryst14030220
APA StyleGuzanová, A., Draganovská, D., Brezinová, J., Tomáš, M., Veligotskyi, N., & Kender, Š. (2024). Hybrid Joining of Dissimilar Thin Metallic Sheets—Mechanical Joining and Adhesive Bonding. Crystals, 14(3), 220. https://doi.org/10.3390/cryst14030220