Experimental and Computational Study of Microhardness Evolution in the HAZ for Al–Cu–Li Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Experimental Procedure
2.2. Computational Procedure
3. Results
3.1. Strengthening Precipitates and Their Evolution during the Welding Thermal Cycle
3.2. Temperature Field Developed during Welding
3.3. Microhardness Tests Results
4. Discussion
4.1. Simulation of the HAZ Microhardness Profile with Isothermal Heat Treatments
4.2. Correlation between Microhardness and Microstructure Changes
5. Conclusions
- The calculated temperature field in the weld seam matches the microhardness profile; therefore, the theoretical and experimental data are in agreement.
- After solution heat-treatments and natural aging, the microhardness of the material decreases from 150 to approximately 120 HV0.2 due to the re-precipitation of T1 with significantly increased width.
- After over-aging heat treatments, the width of θ’ phase is almost ten times higher compared to the as-received sample, which is responsible for the reduction in microhardness. Microhardness decreases at a faster rate as the temperature increases. At 200 °C, it decreased to the value of 112 HV0.2 for 250 °C to 85 HV0.2 and for 300 °C to 64 HV0.2.
- With appropriate isothermal heat treatments, the microhardness profile of the HAZ during LBW can be replicated accurately, implying that it is possible to fabricate samples for the experimental study of damage tolerance behavior in the HAZ.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, S.-W.; Matsuda, K.; Wang, T.; Zou, Y. Microstructures and Mechanical Properties of a Cast Al–Cu–Li Alloy during Heat Treatment Procedure. Rare Met. 2021, 40, 1897–1906. [Google Scholar] [CrossRef]
- Lv, K.; Zhu, C.; Zheng, J.; Wang, X.; Chen, B. Precipitation of T1 Phase in 2198 Al–Li Alloy Studied by Atomic-Resolution HAADF-STEM. J. Mater. Res. 2019, 34, 3535–3544. [Google Scholar] [CrossRef]
- Eswara Prasad, N.; Gokhale, A.A.; Wanhill, R.J.H. Aluminium–Lithium Alloys. In Aerospace Materials and Material Technologies; Prasad, N.E., Wanhill, R.J.H., Eds.; Springer: Singapore, 2017; pp. 53–72. ISBN 9789811021336. [Google Scholar]
- Zhang, S.; Zeng, W.; Yang, W.; Shi, C.; Wang, H. Ageing Response of a Al–Cu–Li 2198 Alloy. Mater. Des. 2014, 63, 368–374. [Google Scholar] [CrossRef]
- Hajjioui, E.A.; Bouchaâla, K.; Faqir, M.; Essadiqi, E. A Review of Manufacturing Processes, Mechanical Properties and Precipitations for Aluminum Lithium Alloys Used in Aeronautic Applications. Heliyon 2023, 9, e12565. [Google Scholar] [CrossRef]
- Wu, H.; Wu, G.; Xiang, L.; Tao, J.; Zheng, Z.; Sun, J.; Li, W.; Huang, C.; Lan, X. Impact of Corrosion on the Degradation of the Mechanical Properties of 2195 and 2297 Al Alloys in the Marine Environment. Metals 2022, 12, 1371. [Google Scholar] [CrossRef]
- Kramer, L.S.; Langan, T.J.; Pickens, J.R.; Last, H. Development of Al-Mg-Li Alloys for Marine Applications. J. Mater. Sci. 1994, 29, 5826–5832. [Google Scholar] [CrossRef]
- Tsivoulas, D.; Prangnell, P.B. Comparison of the Effect of Individual and Combined Zr and Mn Additions on the Fracture Behavior of Al-Cu-Li Alloy AA2198 Rolled Sheet. Met. Mater. Trans. A 2014, 45, 1338–1351. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, X.; Chen, B. Corrosion Behavior of 2198 Al–Cu–Li Alloy in Different Aging Stages in 3.5 wt% NaCl Aqueous Solution. J. Mater. Res. 2018, 33, 1011–1022. [Google Scholar] [CrossRef]
- Starke, E.A. Historical Development and Present Status of Aluminum–Lithium Alloys. In Aluminum-Lithium Alloys; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–26. ISBN 9780124016989. [Google Scholar]
- Hirosawa, S.; Sato, T.; Kamio, A.; Flower, H.M. Classification of the Role of Microalloying Elements in Phase Decomposition of Al Based Alloys. Acta Mater. 2000, 48, 1797–1806. [Google Scholar] [CrossRef]
- Jambor, M.; Nový, F.; Bokůvka, O.; Trško, L. The Natural Aging Behavior of the AA 2055 Al-Cu-Li Alloy. Transp. Res. Procedia 2019, 40, 42–45. [Google Scholar] [CrossRef]
- Li, S.; Yue, X.; Li, Q.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and Applications of Aluminum Alloys for Aerospace Industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Liu, S.; Wróbel, J.S.; LLorca, J. First-Principles Analysis of the Al-Rich Corner of Al-Li-Cu Phase Diagram. Acta Mater. 2022, 236, 118129. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lin, J. Experimental Investigation and Modelling of Yield Strength and Work Hardening Behaviour of Artificially Aged Al-Cu-Li Alloy. Mater. Des. 2019, 183, 108121. [Google Scholar] [CrossRef]
- Decreus, B.; Deschamps, A.; De Geuser, F.; Donnadieu, P.; Sigli, C.; Weyland, M. The Influence of Cu/Li Ratio on Precipitation in Al–Cu–Li–x Alloys. Acta Mater. 2013, 61, 2207–2218. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Xue, P.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y. Effect of Post Weld Artificial Aging and Water Cooling on Microstructure and Mechanical Properties of Friction Stir Welded 2198-T8 Al-Li Joints. J. Mater. Sci. Technol. 2022, 123, 92–112. [Google Scholar] [CrossRef]
- Zhao, T.; Sato, Y.S.; Xiao, R.; Huang, T.; Zhang, J. Hardness Distribution and Aging Response Associated with Precipitation Behavior in a Laser Pressure Welded Al–Li Alloy 2198. Mater. Sci. Eng. A 2021, 808, 140946. [Google Scholar] [CrossRef]
- Gao, C.; Zhu, Z.; Han, J.; Li, H. Correlation of Microstructure and Mechanical Properties in Friction Stir Welded 2198-T8 Al–Li Alloy. Mater. Sci. Eng. A 2015, 639, 489–499. [Google Scholar] [CrossRef]
- Cavaliere, P.; Cabibbo, M.; Panella, F.; Squillace, A. 2198 Al–Li Plates Joined by Friction Stir Welding: Mechanical and Microstructural Behavior. Mater. Des. 2009, 30, 3622–3631. [Google Scholar] [CrossRef]
- Gao, C.; Ma, Y.; Tang, L.; Wang, P.; Zhang, X. Microstructural Evolution and Mechanical Behavior of Friction Spot Welded 2198-T8 Al-Li Alloy during Aging Treatment. Mater. Des. 2017, 115, 224–230. [Google Scholar] [CrossRef]
- Zeng, Q.; Zeng, S.; Wang, D. Stress-Corrosion Behavior and Characteristics of the Friction Stir Welding of an AA2198-T34 Alloy. Int. J. Miner. Met. Mater. 2020, 27, 774–782. [Google Scholar] [CrossRef]
- Texier, D.; Zedan, Y.; Amoros, T.; Feulvarch, E.; Stinville, J.C.; Bocher, P. Near-Surface Mechanical Heterogeneities in a Dissimilar Aluminum Alloys Friction Stir Welded Joint. Mater. Des. 2016, 108, 217–229. [Google Scholar] [CrossRef]
- Rao, J.; Payton, E.J.; Somsen, C.; Neuking, K.; Eggeler, G.; Kostka, A.; Dos Santos, J.F. Where Does the Lithium Go?—A Study of the Precipitates in the Stir Zone of a Friction Stir Weld in a Li-containing 2xxx Series Al Alloy. Adv. Eng. Mater. 2010, 12, 298–303. [Google Scholar] [CrossRef]
- Bitondo, C.; Prisco, U.; Squillace, A.; Giorleo, G.; Buonadonna, P.; Dionoro, G.; Campanile, G. Friction Stir Welding of AA2198-T3 Butt Joints for Aeronautical Applications. Int. J. Mater. Form. 2010, 3, 1079–1082. [Google Scholar] [CrossRef]
- Li, W.; Jiang, R.; Zhang, Z.; Ma, Y. Effect of Rotation Speed to Welding Speed Ratio on Microstructure and Mechanical Behavior of Friction Stir Welded Aluminum–Lithium Alloy Joints. Adv. Eng. Mater. 2013, 15, 1051–1058. [Google Scholar] [CrossRef]
- Ma, Y.E.; Xia, Z.C.; Jiang, R.R.; Li, W. Effect of Welding Parameters on Mechanical and Fatigue Properties of Friction Stir Welded 2198 T8 Aluminum–Lithium Alloy Joints. Eng. Fract. Mech. 2013, 114, 1–11. [Google Scholar] [CrossRef]
- Examilioti, T.N.; Kashaev, N.; Enz, J.; Klusemann, B.; Alexopoulos, N.D. On the Influence of Laser Beam Welding Parameters for Autogenous AA2198 Welded Joints. Int. J. Adv. Manuf. Technol. 2020, 110, 2079–2092. [Google Scholar] [CrossRef]
- Zhao, T.; Sato, Y.S.; Xiao, R.; Huang, T.; Zhang, J. Laser Pressure Welding of Al-Li Alloy 2198: Effect of Welding Parameters on Fusion Zone Characteristics Associated with Mechanical Properties. High Temp. Mater. Process. 2020, 39, 146–156. [Google Scholar] [CrossRef]
- Yin, S.; Lü, J.; Xiao, R. Corrosion Behavior of Laser Beam Welded Joint of 2198 Aluminium-Lithium Alloy with Filler Wire. Chin. J. Laser 2016, 43, 0403007. [Google Scholar] [CrossRef]
- Lin, K.; Yang, W.; Huang, T.; Xiao, R. Laser Welding of 2198-T851 Al-Li Alloy with Filler Wire. Guang Xue Xue Bao 2015, 35, s216001. [Google Scholar] [CrossRef]
- Węgrzyn, T.; Piwnik, J.; Łazarz, B.; Wieszała, R.; Hadryś, D. Parameters of Welding with Micro-Jet Cooling. Arch. Mater. Sci. Eng. 2012, 54, 86–92. [Google Scholar]
- Szczucka-Lasota, B.; Węgrzyn, T.; Krzysztoforski, M. Aluminum Alloys Welding with Micro-Jet Cooling in Busducts. Weld. Tech. Rev. 2018, 91, 24–30. [Google Scholar] [CrossRef]
- David, S.A.; Babu, S.S.; Vitek, J.M. Welding. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–9. ISBN 9780080431529. [Google Scholar]
- Song, W.; Man, Z.; Xu, J.; Wang, X.; Liu, C.; Zhou, G.; Berto, F. Fatigue Crack Growth Behavior of Different Zones in an Overmatched Welded Joint Made with D32 Marine Structural Steel. Metals 2023, 13, 535. [Google Scholar] [CrossRef]
- Song, Y.; Chai, M.; Han, Z. Experimental Investigation of Fatigue Crack Growth Behavior of the 2.25Cr1Mo0.25V Steel Welded Joint Used in Hydrogenation Reactors. Materials 2021, 14, 1159. [Google Scholar] [CrossRef] [PubMed]
- Smaili, F.; Lojen, G.; Vuherer, T. Fatigue Crack Initiation and Propagation of Different Heat Affected Zones in the Presence of a Microdefect. Int. J. Fatigue 2019, 128, 105191. [Google Scholar] [CrossRef]
- Tzamtzis, A. Fatigue Crack Growth Prediction under Mode I Loading in Friction Stir Aluminum Alloy Weld; University of Thessaly, School of Engineering, Department of Mechanical Engineering: Volos, Greece, 2015. [Google Scholar]
- Kim, S.; Kang, D.; Kim, T.-W.; Lee, J.; Lee, C. Fatigue Crack Growth Behavior of the Simulated HAZ of 800MPa Grade High-Performance Steel. Mater. Sci. Eng. A 2011, 528, 2331–2338. [Google Scholar] [CrossRef]
- Vriami, D. Experimental Study of Welding of New Aircraft Aluminum Alloys with High Power Beams (LBW, EBW). Diploma Thesis, Department of Mechanical Engineering, University of Thessaly, Volos, Greece, 2010. (In Greek). [Google Scholar]
- Zervaki, A.D.; Haidemenopoulos, G.N. Computational Kinetics Simulation of the Dissolution and Coarsening in the HAZ during Laser Welding of 6061-T6 Al-Alloy. Weld. Res. 2007, 86, 211–221. [Google Scholar]
- Andersson, J.-O.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, Computational Tools for Materials Science. Calphad 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Masubuchi, K. Analysis of Welded Structures; Elsevier: Amsterdam, The Netherlands, 1980; pp. 60–71. ISBN 9780080227146. [Google Scholar]
- Yang, Y.; He, G.; Liu, Y.; Li, K.; Wu, W.; Huang, C. Quantitative Contribution of T1 Phase to the Strength of Al-Cu-Li Alloys. J. Mater. Sci. 2021, 56, 18368–18390. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Cr | Zn | Zr | Li | Ag | Al |
---|---|---|---|---|---|---|---|---|---|---|
0.08 | 0.10 | 3.50 | 0.5 | 0.80 | 0.05 | 0.35 | 0.18 | 1.10 | 0.50 | Rem. |
Power (W) | Speed (m/min) | Heat Input Rate (J/mm) | Arc Efficiency |
---|---|---|---|
3441 | 2 | 103 | 0.47 |
Solution Heat Treatment + Natural Aging | Over-Aging |
---|---|
450 °C/5, 10, 20, 40, 60 min | 200 °C/8, 16, 24, 32, 48, 80, 153 h |
500 °C/10, 20, 40, 60 min | 250 °C/2, 4, 8, 16, 24, 32 h |
550 °C/5, 10, 20, 40, 60 min | 300 °C/8, 16 h |
Model Parameter (Unit) | Symbol | Numerical Value |
---|---|---|
Temperature (°C) | T | Calculated |
Initial temperature (°C) | To | 25 |
Arc thermal power (arc efficiency × power) (W) | Q | 1617 |
Thermal conductivity (W/mm°C) | k | 0.125 |
Arc speed (mm/s) | u | 33.3 |
Thermal diffusivity (mm2/s) | α | 51.63 |
Thickness of Al sheet (mm) | H | 3.8 |
Phase | As-Received | HT 500 °C/20 min + Natural Aging | HT 200 °C/48 h | |||
---|---|---|---|---|---|---|
Width (nm) | f (%) | Width (nm) | f (%) | Width (nm) | f (%) | |
θ’ (Al2Cu) | 2.5 ± 0.6 | 3.42 ± 1.03 | 4.86 ± 1.63 | 2.59 ± 0.97 | 25.5 ± 9 | 3.42 ± 1.03 |
Τ1 (Al2CuLi) | 5.85 ± 2.3 | 1.17 ± 0.29 | 21.61 ± 9.25 | 8.46 ± 2.3 | - | - |
HV0.2 | 150 | 119 | 114.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maritsa, S.; Deligiannis, S.; Tsakiridis, P.E.; Zervaki, A.D. Experimental and Computational Study of Microhardness Evolution in the HAZ for Al–Cu–Li Alloys. Crystals 2024, 14, 246. https://doi.org/10.3390/cryst14030246
Maritsa S, Deligiannis S, Tsakiridis PE, Zervaki AD. Experimental and Computational Study of Microhardness Evolution in the HAZ for Al–Cu–Li Alloys. Crystals. 2024; 14(3):246. https://doi.org/10.3390/cryst14030246
Chicago/Turabian StyleMaritsa, Stavroula, Stavros Deligiannis, Petros E. Tsakiridis, and Anna D. Zervaki. 2024. "Experimental and Computational Study of Microhardness Evolution in the HAZ for Al–Cu–Li Alloys" Crystals 14, no. 3: 246. https://doi.org/10.3390/cryst14030246
APA StyleMaritsa, S., Deligiannis, S., Tsakiridis, P. E., & Zervaki, A. D. (2024). Experimental and Computational Study of Microhardness Evolution in the HAZ for Al–Cu–Li Alloys. Crystals, 14(3), 246. https://doi.org/10.3390/cryst14030246