Structural Evolution and Mechanical Behavior of Ytterbia Doped Hafnia Biphasic Ceramics under Annealing at 1500 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Microstructure and Properties Characterization
3. Results and Discussion
3.1. Formation of Hafnium Oxide Ceramic Sandwich Structure
3.2. Microstructure Evolution during Thermal Aging
3.3. Hardness and Fracture Toughness
3.4. The Toughening Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, Z.Y.; Meng, G.H.; Chen, L.; Li, G.R.; Liu, M.J.; Zhang, W.X.; Zhao, L.N.; Zhang, Q.; Zhang, X.D.; Wan, C.L.; et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J. Adv. Ceram. 2022, 11, 985–1068. [Google Scholar] [CrossRef]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–902. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Materials science—Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Stöver, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Trice, R.W.; Su, Y.J.; Mawdsley, J.R.; Faber, K.T.; De Arellano-López, A.R.; Wang, H.; Porter, W.D. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J. Mater. Sci. 2002, 37, 2359–2365. [Google Scholar] [CrossRef]
- Vassen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Jamali, H.; Mozafarinia, R.; Razavi, R.S.; Ahmadi-Pidani, R. Comparison of thermal shock resistances of plasma-sprayed nano structured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2012, 38, 6705–6712. [Google Scholar] [CrossRef]
- Ren, X.R.; Zhao, M.; Feng, J.; Pan, W. Phase transformation behavior in air plasma sprayed yttria stabilized zirconia coating. J. Alloys Compd. 2018, 750, 189–196. [Google Scholar] [CrossRef]
- Thompson, J.A.; Clyne, T.W. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Mater. 2001, 49, 1565–1575. [Google Scholar] [CrossRef]
- Matsumoto, K.; Itoh, Y.; Kameda, T. EB-PVD process and thermal properties of hafnia-based thermal barrier coating. Sci. Technol. Adv. Mater. 2003, 4, 153–158. [Google Scholar] [CrossRef]
- Zhu, D.M.; Miller, R.A. Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings. Surf. Coat. Technol. 1998, 108, 114–120. [Google Scholar] [CrossRef]
- Basu, B. Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 2005, 50, 239–256. [Google Scholar] [CrossRef]
- Sluytman, V.; Jason, S.; Kraemer, S.; Tolpygo, V.K.; Levi, C.G. Microstructure evolution of ZrO2-YbTaO4 thermal barrier coatings. Acta Mater. 2015, 96, 133–142. [Google Scholar] [CrossRef]
- Wu, Y.M.; Hong, D.; Zhong, X.; Niu, Y.R.; Zheng, X.B. Research progress on hafnium-based thermal barrier coatings materials. Ceram. Int. 2023, 49, 21133–21141. [Google Scholar] [CrossRef]
- Yu, Z.X.; Qi, T.; Ge, M.; Zhang, W.G.; Hu, Z.H.; Sun, X.M. Microstructures and phase compositions of Y2O3-ZrO2-HfO2 solid solutions. Ceram. Int. 2023, 49, 26119–26128. [Google Scholar] [CrossRef]
- Cao, Y.N.; Li, C.; Ma, Y.; Luo, H.Y.; Yang, Y.H.; Guo, H.B. Mechanical properties and thermal conductivities of 3YSZ-toughened fully stabilized HfO2 ceramics. Ceram. Int. 2019, 45, 12851–12859. [Google Scholar] [CrossRef]
- Hunter, O., Jr.; Scheidecker, R.W.; Tojo, S. Characterization of metastable tetragonal hafnia. Ceram. Int. 1979, 5, 137–142. [Google Scholar] [CrossRef]
- Wirkus, C.D.; Berard, M.F. Abradability and hardness in rare-earth-oxide stabilized hafnia. J. Mater. Sci. 1982, 17, 109–114. [Google Scholar] [CrossRef]
- Dell’Agli, G.; Mascolo, G. Agglomeration of 3 mol% Y-TZP powders sythesized by hydrothermal treatment. J. Eur. Ceram. Soc. 2001, 21, 29–35. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.P.; Stevens, R. Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 1992, 27, 5397–5430. [Google Scholar] [CrossRef]
- Lee, C.K.; Cho, E.N.; Lee, H.S.; Hwang, C.S.; Han, S.W. First-principles study on doping and phase stability of HfO2. Phys. Rev. B 2008, 78, 012102. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Xue, Z.L.; Yang, Y.H.; Chen, J.H.; Guo, H.B. Effect of Y doping on microstructure and thermophysical properties of yttria stabilized hafnia ceramics. Ceram. Int. 2018, 44, 18213–18221. [Google Scholar] [CrossRef]
- Gullapalli, S.K. Gadolinia Doped Hafnia (Gd2O3-HfO2) Thermal Barrier Coatings for Gas Turbine Applications; The University of Texas at El Paso: El Paso, TX, USA, 2014. [Google Scholar]
- Li, C.; He, J.; Ma, Y. Sintering behavior and thermal conductivity of Y2O3 fully stabilized HfO2 ceramics. Rare Met. 2021, 40, 1255–1266. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Ma, Y.; Guo, H.B. Evolution mechanism of the microstructure and mechanical properties of plasma-sprayed yttria-stabilized hafnia thermal barrier coating at 1400 °C. Ceram. Int. 2020, 46, 23417–23426. [Google Scholar] [CrossRef]
- Chen, W.; Ketkaew, J.; Liu, Z.; Mota, R.M.O.; O’Brien, K.; da Silva, C.S.; Schroers, J. Does the fracture toughness of bulk metallic glasses scatter? Scr. Mater. 2015, 107, 1–4. [Google Scholar] [CrossRef]
- Li, J.; Lam, A.T.L.; Toh, J.P.W.; Reuveny, S.; Oh, S.K.W.; Birch, W.R. Tunable Volumetric Density and Porous Structure of Spherical Poly-ε-caprolactone Microcarriers, as Applied in Human Mesenchymal Stem Cell Expansion. Langmuir 2017, 33, 3068–3079. [Google Scholar] [CrossRef]
- Chantikul, P.; Anstis, G.R.; Lawn, B.R.; Marshall, D.B. A critical evaluation of indentation techniques for measuring fracture toughness: Ⅱ, strength method. J. Am. Ceram. Soc. 1981, 64, 539–543. [Google Scholar] [CrossRef]
- Li, C.; Ni, L.Y.; Qu, D.; Yang, Z.X.; Ma, K.Z.; Wen, B.; He, C.; Li, J.D. Phase transformation mechanism of the APS yttria partially stabilized hafnia coating undergoing thermal exposure. J. Eur. Ceram. Soc. 2022, 42, 2370–2380. [Google Scholar] [CrossRef]
- Matovic, B.; Pantic, J.; Lukovic, J.; Cebela, M.; Dmitrovic, S.; Mirkovic, M.; Prekaj, M. A novel reduction-oxidation synthetic route for hafnia. Ceram. Int. 2016, 42, 615–620. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; He, J.; Guo, H.B. Self-toughening behavior of nano yttria partially stabilized hafnia ceramics. Ceram. Int. 2019, 45, 21467–21474. [Google Scholar] [CrossRef]
- Schlichting, K.W.; Padture, N.P.; Jordan, E.H.; Gell, M. Failure modes in plasma-sprayed thermal barrier coatings. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2003, 342, 120–130. [Google Scholar] [CrossRef]
- Du, A.B.; Qu, Z.X.; Wu, R.F.; Wan, C.L.; Pan, W. Mechanical Anisotropy in LaPO4 Ceramics. Rare Met. Mater. Eng. 2009, 38, 217–219. [Google Scholar]
- Wang, C.M.; Guo, L.; Zhang, Y.; Zhao, X.X.; Ye, F.X. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics. Ceram. Int. 2015, 41, 10730–10735. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.B.; Gong, S.K. Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure. Ceram. Int. 2009, 35, 2639–2644. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction. Phys. Bull. 1957, 10, 15–22. [Google Scholar]
- Gao, P.; Zhao, B.R.; Gong, T. Research on the relationship between residual compressive stress and surface fracture toughness. Ordnance Mater. Sci. Eng. 1999, 22, 3. [Google Scholar]
- Jiang, K.; Liu, S.B.; Ma, G.H.; Zhao, L.L. Microstructure and mechanical properties of La2Zr2O7-(Zr0.92Y0.08) O1.96 composite ceramics prepared by spark plasma sintering. Ceram. Int. 2014, 40, 13979–13985. [Google Scholar] [CrossRef]
Annealing Time | M Phase | C Phase |
---|---|---|
0 h | 41.8% | 58.2% |
3 h | 47.6% | 52.4% |
6 h | 48.9% | 51.1% |
12 h | 49.0% | 51.0% |
24 h | 49.5% | 50.5% |
48 h | 49.8% | 50.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Lan, H.; Sun, X.; Hu, Z.; Sun, Y.; Zhang, H.; Huang, C.; Zhang, W. Structural Evolution and Mechanical Behavior of Ytterbia Doped Hafnia Biphasic Ceramics under Annealing at 1500 °C. Crystals 2024, 14, 279. https://doi.org/10.3390/cryst14030279
Wu Y, Lan H, Sun X, Hu Z, Sun Y, Zhang H, Huang C, Zhang W. Structural Evolution and Mechanical Behavior of Ytterbia Doped Hafnia Biphasic Ceramics under Annealing at 1500 °C. Crystals. 2024; 14(3):279. https://doi.org/10.3390/cryst14030279
Chicago/Turabian StyleWu, Yang, Hao Lan, Xiaoming Sun, Zihao Hu, Yonghui Sun, Huifeng Zhang, Chuanbing Huang, and Weigang Zhang. 2024. "Structural Evolution and Mechanical Behavior of Ytterbia Doped Hafnia Biphasic Ceramics under Annealing at 1500 °C" Crystals 14, no. 3: 279. https://doi.org/10.3390/cryst14030279
APA StyleWu, Y., Lan, H., Sun, X., Hu, Z., Sun, Y., Zhang, H., Huang, C., & Zhang, W. (2024). Structural Evolution and Mechanical Behavior of Ytterbia Doped Hafnia Biphasic Ceramics under Annealing at 1500 °C. Crystals, 14(3), 279. https://doi.org/10.3390/cryst14030279