Nanostructured Materials for Enhanced Performance of Solid Oxide Fuel Cells: A Comprehensive Review
Abstract
:1. Introduction
2. Working of SOFC
3. SOFC Main Components
3.1. Electrolyte
3.2. Anode
3.3. Cathode
4. Proton-Conducting SOFC
5. Cell Geometry
6. Electrochemical Mechanisms and Energy Losses
- V0 is the equilibrium potential at standard conditions,
- n is the number of electrons taking part in each half-cell reaction,
- F is Faraday’s constant, the number of coulombs in a mole of electrons.
7. Nanostructured Approaches in SOFC Engineering
7.1. Triple Phase Boundary
7.2. Oxygen Ions Conduction Mechanism
7.3. Numerical Modling
8. Poisoning and Contamination of Ni-Based Anode for SOFC
9. Experimental Details on Nanostructured Materials for SOFC
9.1. Electrolyte Preparation and Its Impact on Ionic Conductivity
9.2. Anode Preparation and Its Effect on Electrocatalytic Activity
9.3. Cathode Preparation and Its Role in Enhancing Oxygen Reduction Kinetics
10. Challenges and Obstacles
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sreedhar, I.; Agarwal, B.; Goyal, P.; Singh, S.A. Recent advances in material and performance aspects of solid oxide fuel cells. J. Electroanal. Chem. 2019, 848, 113315. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Singh, M.; Zappa, D.; Comini, E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrogen Energy 2021, 46, 27643–27674. [Google Scholar] [CrossRef]
- Lyu, Y.; Xie, J.; Wang, D.; Wang, J. Review of cell performance in solid oxide fuel cells. J. Mater. Sci. 2020, 55, 7184–7207. [Google Scholar] [CrossRef]
- Kuterbekov, K.A.; Nikonov, A.V.; Bekmyrza, K.Z.; Pavzderin, N.B.; Kabyshev, A.M.; Kubenova, M.M.; Kabdrakhimova, G.D.; Aidarbekov, N. Classification of solid oxide fuel cells. Nanomaterials 2022, 12, 1059. [Google Scholar] [CrossRef] [PubMed]
- Choolaei, M.; Vostakola, M.F.; Horri, B.A. Recent Advances and Challenges in Thin-Film Fabrication Techniques for Low-Temperature Solid Oxide Fuel Cells. Crystals 2023, 13, 1008. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Kalinina, E.G. Solid oxide fuel cells based on ceramic membranes with mixed conductivity: Improving efficiency. Russ. Chem. Rev. 2021, 90, 703. [Google Scholar] [CrossRef]
- Zakaria, Z.; Awang Mat, Z.; Abu Hassan, S.H.; Boon Kar, Y. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int. J. Energy Res. 2020, 44, 594–611. [Google Scholar] [CrossRef]
- Matthew, O.; Nieh, S. Effects of ORC Working Fluids on Combined Cycle Integrated with SOFC and ORC for Stationary Power Generation. Energy Power Eng. 2019, 11, 167–185. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Sadaghiani, M.S.; Pourfayaz, F.; Ghazvini, M.; Mahian, O.; Mehrpooya, M.; Wongwises, S. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic rankine cycle power plant with liquefied natural gas as heat sink. Entropy 2018, 20, 484. [Google Scholar] [CrossRef]
- Bossel, U. Rapid startup SOFC modules. Energy Procedia 2012, 28, 48–56. [Google Scholar] [CrossRef]
- Kariya, T.; Tanaka, H.; Hirono, T.; Kuse, T.; Yanagimoto, K.; Uchiyama, K.; Henmi, M.; Hirose, M.; Kimura, I.; Suu, K. Development of a novel cell structure for low-temperature SOFC using porous stainless steel support combined with hydrogen permeable Pd layer and thin film proton conductor. J. Alloys Compd. 2016, 654, 171–175. [Google Scholar] [CrossRef]
- Rafique, M.; Nawaz, H.; Shahid Rafique, M.; Bilal Tahir, M.; Nabi, G.; Khalid, N. Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews. Int. J. Energy Res. 2019, 43, 2423–2446. [Google Scholar] [CrossRef]
- Kilner, J.A.; Burriel, M. Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 2014, 44, 365–393. [Google Scholar] [CrossRef]
- Bove, R. Solid oxide fuel cells: Principles, designs and state-of-the-art in industries. In Recent Trends in Fuel Cell Science and Technology; Springer: New York, NY, USA, 2007; pp. 267–285. [Google Scholar]
- Mah, J.C.; Muchtar, A.; Somalu, M.R.; Ghazali, M.J. Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques. Int. J. Hydrogen Energy 2017, 42, 9219–9229. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Habib, F.; Malik, A.H.; Qazi, M.J.; Ahmad, S.; Ganayee, M.A.; Ahmad, Z. Solid-oxide fuel cells: A critical review of materials for cell components. MRS Commun. 2023, 13, 378–384. [Google Scholar] [CrossRef]
- Choi, S.; Sengodan, S.; Park, S.; Ju, Y.-W.; Kim, J.; Hyodo, J.; Jeong, H.Y.; Ishihara, T.; Shin, J.; Kim, G. A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ. J. Mater. Chem. A 2016, 4, 1747–1753. [Google Scholar] [CrossRef]
- Kan, W.H.; Samson, A.J.; Thangadurai, V. Trends in electrode development for next generation solid oxide fuel cells. J. Mater. Chem. A 2016, 4, 17913–17932. [Google Scholar] [CrossRef]
- Mathur, L.; Namgung, Y.; Kim, H.; Song, S.-J. Recent progress in electrolyte-supported solid oxide fuel cells: A review. J. Korean Ceram. Soc. 2023, 60, 614–636. [Google Scholar] [CrossRef]
- Mansilla, Y.; Arce, M.; Oliver, C.G.; Troiani, H.; Serquis, A. Synthesis and characterization of ZrO2 and YSZ thin films. Mater. Today Proc. 2019, 14, 92–95. [Google Scholar] [CrossRef]
- Bagchi, B.; Basu, R.N. A simple sol–gel approach to synthesize nanocrystalline 8 mol% yttria stabilized zirconia from metal-chelate precursors: Microstructural evolution and conductivity studies. J. Alloys Compd. 2015, 647, 620–626. [Google Scholar] [CrossRef]
- Preux, N.; Rolle, A.; Vannier, R. Electrolytes and ion conductors for solid oxide fuel cells (SOFCs). In Functional Materials for Sustainable Energy Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 370–401. [Google Scholar]
- Stambouli, A.B.; Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Sun, J.; Zhang, S.; Liu, X.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176–1186. [Google Scholar] [CrossRef]
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Yao, C.; Lou, H.; Chen, M.; Lang, X.; Cai, K. Review of SOFC Cathode Performance Enhancement by Surface Modifications: Recent Advances and Future Directions. Energy Fuels 2023, 37, 3470–3487. [Google Scholar] [CrossRef]
- Ali, A.; Irshad, M.; Siraj, K.; Raza, R.; Rafique, A.; Ullah, M.K.; Usman, A.; Tiwari, P.; Zhu, B.; Ali, A. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance. Appl. Sci. 2016, 6, 75. [Google Scholar] [CrossRef]
- Mai, A.; Haanappel, V.A.; Uhlenbruck, S.; Tietz, F.; Stöver, D. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition. Solid State Ion. 2005, 176, 1341–1350. [Google Scholar] [CrossRef]
- Mai, A.; Haanappel, V.; Tietz, F.; Vinke, I.; Stöver, D. Microstructural and electrochemical characterisation of LSFC-based cathodes for anode-supported solid oxide fuel cells. ECS Proc. Vol. 2003, 2003, 525. [Google Scholar] [CrossRef]
- Zhao, L.; He, B.; Lin, B.; Ding, H.; Wang, S.; Ling, Y.; Peng, R.; Meng, G.; Liu, X. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+ δ cathode. J. Power Sources 2009, 194, 835–837. [Google Scholar] [CrossRef]
- Lei, L.; Tao, Z.; Hong, T.; Wang, X.; Chen, F. A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells. J. Power Sources 2018, 389, 1–7. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, Y.; Chen, L.; Wang, L.; Chou, K. Enhancement of electrochemical performance for proton conductive solid oxide fuel cell by 30% GDC-LSCF cathode. Ceram. Int. 2022, 48, 17816–17827. [Google Scholar] [CrossRef]
- Li, G.; He, B.; Ling, Y.; Xu, J.; Zhao, L. Highly active YSB infiltrated LSCF cathode for proton conducting solid oxide fuel cells. Int. J. Hydrogen Energy 2015, 40, 13576–13582. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shimizu, S.; Suzuki, T.; Fujishiro, Y.; Awano, M. Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack. Mater. Lett. 2009, 63, 2577–2580. [Google Scholar] [CrossRef]
- Lu, L.; Liu, W.; Wang, J.; Wang, Y.; Xia, C.; Zhou, X.-D.; Chen, M.; Guan, W. Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes. Appl. Energy 2020, 259, 114130. [Google Scholar] [CrossRef]
- Li, G.; Gou, Y.; Qiao, J.; Sun, W.; Wang, Z.; Sun, K. Recent progress of tubular solid oxide fuel cell: From materials to applications. J. Power Sources 2020, 477, 228693. [Google Scholar] [CrossRef]
- Nagel, F.P.; Schildhauer, T.J.; Biollaz, S.M.; Wokaun, A. Performance comparison of planar, tubular and Delta8 solid oxide fuel cells using a generalized finite volume model. J. Power Sources 2008, 184, 143–164. [Google Scholar] [CrossRef]
- Timurkutluk, B.; Timurkutluk, C.; Mat, M.D.; Kaplan, Y. A review on cell/stack designs for high performance solid oxide fuel cells. Renew. Sustain. Energy Rev. 2016, 56, 1101–1121. [Google Scholar] [CrossRef]
- Pi, S.-H.; Lee, J.-W.; Lee, S.-B.; Lim, T.-H.; Park, S.-J.; Park, C.-O.; Song, R.-H. Performance and durability of anode-supported flat-tubular solid oxide fuel cells with Ag-Infiltrated cathodes. J. Nanosci. Nanotechnol. 2014, 14, 7668–7673. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jin, C.; Liu, M.; Chen, F. Intermediate temperature micro-tubular SOFCs with enhanced performance and thermal stability. Electrochem. Commun. 2013, 34, 231–234. [Google Scholar] [CrossRef]
- Yoo, Y.; Wang, Y.; Deng, X.; Singh, D.; Legoux, J.-G. Metal supported tubular solid oxide fuel cells fabricated by suspension plasma spray and suspension high velocity oxy-fuel spray. J. Power Sources 2012, 215, 307–311. [Google Scholar] [CrossRef]
- Mahmud, L.; Muchtar, A.; Somalu, M. Challenges in fabricating planar solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 2017, 72, 105–116. [Google Scholar] [CrossRef]
- Khan, M.Z.; Iltaf, A.; Ishfaq, H.A.; Khan, F.N.; Tanveer, W.H.; Song, R.-H.; Mehran, M.T.; Saleem, M.; Hussain, A.; Masaud, Z. Flat-tubular solid oxide fuel cells and stacks: A review. J. Asian Ceram. Soc. 2021, 9, 745–770. [Google Scholar] [CrossRef]
- Kim, S.-D.; Yu, J.-H.; Seo, D.-W.; Han, I.-S.; Woo, S.-K. Hydrogen production performance of 3-cell flat-tubular solid oxide electrolysis stack. Int. J. Hydrogen Energy 2012, 37, 78–83. [Google Scholar] [CrossRef]
- Muritala, I.K.; Guban, D.; Roeb, M.; Sattler, C. High temperature production of hydrogen: Assessment of non-renewable resources technologies and emerging trends. Int. J. Hydrogen Energy 2020, 45, 26022–26035. [Google Scholar] [CrossRef]
- Minh, N.Q. Solid oxide fuel cell technology—Features and applications. Solid State Ion. 2004, 174, 271–277. [Google Scholar] [CrossRef]
- Steele, B.C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Klotz, D.; Butz, B.; Leonide, A.; Hayd, J.; Gerthsen, D.; Ivers-Tiffée, E. Performance enhancement of SOFC anode through electrochemically induced Ni/YSZ nanostructures. J. Electrochem. Soc. 2011, 158, B587. [Google Scholar] [CrossRef]
- Chao, C.-C.; Hsu, C.-M.; Cui, Y.; Prinz, F.B. Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 2011, 5, 5692–5696. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, H.; Luo, T.; Wang, J.; Shi, Y.; Xia, C.; Wang, S.; Zhan, Z. A Nanostructured Architecture for Reduced-Temperature Solid Oxide Fuel Cells. Adv. Energy Mater. 2015, 5, 1500375. [Google Scholar] [CrossRef]
- Carneiro, J.S.A.; Brocca, R.A.; Lucena, M.L.R.S.; Nikolla, E. Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides. Appl. Catal. B Environ. 2017, 200, 106–113. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Wang, Z.; Zhang, Y.; Xia, C. Electrical performance of nano-structured La0.6Sr0.4Co0.2Fe0.8O3-δ impregnated onto yttria-stabilized zirconia backbone. J. Electrochem. Soc. 2016, 163, F393. [Google Scholar] [CrossRef]
- Celikbilek, O.; Thieu, C.-A.; Agnese, F.; Calì, E.; Lenser, C.; Menzler, N.H.; Son, J.-W.; Skinner, S.J.; Djurado, E. Enhanced catalytic activity of nanostructured, A-site deficient (La0.7Sr0.3)0.95(Co0.2Fe0.8)O3−δ for SOFC cathodes. J. Mater. Chem. A 2019, 7, 25102–25111. [Google Scholar] [CrossRef]
- Lee, K.T.; Wachsman, E.D. Role of nanostructures on SOFC performance at reduced temperatures. Mrs Bull. 2014, 39, 783–791. [Google Scholar] [CrossRef]
- Kim, S.-D.; Lee, J.-J.; Moon, H.; Hyun, S.-H.; Moon, J.; Kim, J.; Lee, H.-W. Effects of anode and electrolyte microstructures on performance of solid oxide fuel cells. J. Power Sources 2007, 169, 265–270. [Google Scholar] [CrossRef]
- Tanner, C.W.; Fung, K.Z.; Virkar, A.V. The effect of porous composite electrode structure on solid oxide fuel cell performance: I. theoretical analysis. J. Electrochem. Soc. 1997, 144, 21. [Google Scholar] [CrossRef]
- Kornely, M. Elektrische Charakterisierung und Modellierung von Metallischen Interkonnektoren (MIC) des SOFC-Stacks; KIT Scientific Publishing: Karlsruhe, Germany, 2014. [Google Scholar]
- Liu, M.; Lynch, M.E.; Blinn, K.; Alamgir, F.M.; Choi, Y. Rational SOFC material design: New advances and tools. Mater. Today 2011, 14, 534–546. [Google Scholar] [CrossRef]
- Karuppiah, K.; Ashok, A.M. Review of Proton-and Oxide-Ion-Conducting Perovskite Materials for SOFC Applications; Thomas Telford Ltd.: London, UK, 2019. [Google Scholar]
- Yatoo, M.A.; Seymour, I.D.; Skinner, S.J. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Adv. 2023, 13, 13786–13797. [Google Scholar] [CrossRef] [PubMed]
- Nikonov, A.; Kuterbekov, K.; Bekmyrza, K.Z.; Pavzderin, N. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J. Phys. Funct. Mater. 2018, 2, 274–292. [Google Scholar] [CrossRef]
- Tanveer, W.H.; Iwai, H.; Yu, W.; Pandiyan, A.; Ji, S.; Lee, Y.H.; Lee, Y.; Yaqoob, K.; Cho, G.Y.; Cha, S.W. Experimentation and modelling of nanostructured nickel cermet anodes for submicron SOFCs fuelled indirectly by industrial waste carbon. J. Mater. Chem. A 2018, 6, 11169–11179. [Google Scholar] [CrossRef]
- Halinen, M.; Saarinen, J.; Noponen, M.; Vinke, I.; Kiviaho, J. Experimental analysis on performance and durability of SOFC demonstration unit. Fuel Cells 2010, 10, 440–452. [Google Scholar] [CrossRef]
- Weber, A.; Dierickx, S.; Kromp, A.; Ivers-Tiffée, E. Sulfur poisoning of anode-supported SOFCs under reformate operation. Fuel Cells 2013, 13, 487–493. [Google Scholar] [CrossRef]
- Hagen, A. Sulfur poisoning of the water gas shift reaction on anode supported solid oxide fuel cells. J. Electrochem. Soc. 2012, 160, F111. [Google Scholar] [CrossRef]
- Brightman, E.; Ivey, D.; Brett, D.; Brandon, N. The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes. J. Power Sources 2011, 196, 7182–7187. [Google Scholar] [CrossRef]
- Gavrielatos, I.; Drakopoulos, V.; Neophytides, S.G. Carbon tolerant Ni–Au SOFC electrodes operating under internal steam reforming conditions. J. Catal. 2008, 259, 75–84. [Google Scholar] [CrossRef]
- Gong, M.; Liu, X.; Trembly, J.; Johnson, C. Sulfur-tolerant anode materials for solid oxide fuel cell application. J. Power Sources 2007, 168, 289–298. [Google Scholar] [CrossRef]
- Atkinson, A.; Barnett, S.; Gorte, R.J.; Irvine, J.T.S.; McEvoy, A.J.; Mogensen, M.; Singhal, S.C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17–27. [Google Scholar] [CrossRef]
- Sun, C.; Stimming, U. Recent anode advances in solid oxide fuel cells. J. Power Sources 2007, 171, 247–260. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.-H.; Choi, Y.; Yang, L.; Lin, M.-C.; Liu, M. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 2011, 4, 4380–4409. [Google Scholar] [CrossRef]
- Vincent, A.L.; Luo, J.-L.; Chuang, K.T.; Sanger, A.R. Promotion of activation of CH4 by H2S in oxidation of sour gas over sulfur tolerant SOFC anode catalysts. Appl. Catal. B Environ. 2011, 106, 114–122. [Google Scholar] [CrossRef]
- Rao, T.P.; Dhar, G.M. Recent Advances in Basic and Applied Aspects of Industrial Catalysis; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Strohm, J.J.; Zheng, J.; Song, C. Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh–Ni catalysts for fuel cells. J. Catal. 2006, 238, 309–320. [Google Scholar] [CrossRef]
- Nikolla, E.; Schwank, J.; Linic, S. Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J. Catal. 2007, 250, 85–93. [Google Scholar] [CrossRef]
- Nikolla, E.; Schwank, J.; Linic, S. Direct electrochemical oxidation of hydrocarbon fuels on SOFCs: Improved carbon tolerance of Ni alloy anodes. J. Electrochem. Soc. 2009, 156, B1312. [Google Scholar] [CrossRef]
- Nikolla, E.; Schwank, J.; Linic, S. Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry. J. Catal. 2009, 263, 220–227. [Google Scholar] [CrossRef]
- Kan, H.; Lee, H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl. Catal. B Environ. 2010, 97, 108–114. [Google Scholar] [CrossRef]
- Kim, H.; Lu, C.; Worrell, W.; Vohs, J.; Gorte, R. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J. Electrochem. Soc. 2002, 149, A247. [Google Scholar] [CrossRef]
- Gorte, R.J.; Vohs, J. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J. Catal. 2003, 216, 477–486. [Google Scholar] [CrossRef]
- Krishnan, V.V.; McIntosh, S.; Gorte, R.J.; Vohs, J.M. Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells. Solid State Ion. 2004, 166, 191–197. [Google Scholar] [CrossRef]
- Costa-Nunes, O.; Gorte, R.J.; Vohs, J.M. Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas. J. Power Sources 2005, 141, 241–249. [Google Scholar] [CrossRef]
- Wang, S.-Q.; Geng, J.-H.; Zhao, X.-X.; Xing, Y.-Z. Elevated sintering capability and electrical conductivity of Fe2O3-doped Ce0.8Sm0.1Nd0.1O2−δ as an electrolyte in IT-SOFCs. Mater. Chem. Phys. 2023, 309, 128345. [Google Scholar] [CrossRef]
- Rahumi, O.; Sobolev, A.; Rath, M.K.; Borodianskiy, K. Nanostructured engineering of nickel cermet anode for solid oxide fuel cell using inkjet printing. J. Eur. Ceram. Soc. 2021, 41, 4528–4536. [Google Scholar] [CrossRef]
- Mashola, T.A.; Matthews, T.; Msomi, P.F.; Maxakato, N.W. Novel nanostructured electrocatalysts for fuel cell technology: Design, solution chemistry-based preparation approaches and application. Nano-Struct. Nano-Objects 2022, 29, 100831. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Yan, M. A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Sep. Purif. Technol. 2022, 298, 121627. [Google Scholar] [CrossRef]
- Xu, D.; Yan, A.; Yang, Y.; Xu, S.; Zhou, Y.; Yang, S.; Lin, W.-F. Fast ion-conductive electrolyte based on a doped LaAlO3 with an amorphous surface layer for low-temperature solid oxide fuel cells. J. Power Sources 2023, 561, 232723. [Google Scholar] [CrossRef]
- Raza, R.; Zhu, B.; Rafique, A.; Naqvi, M.R.; Lund, P. Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review. Mater. Today Energy 2020, 15, 100373. [Google Scholar] [CrossRef]
- Chen, G.; Sun, W.; Luo, Y.; He, Y.; Zhang, X.; Zhu, B.; Li, W.; Liu, X.; Ding, Y.; Li, Y. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 10642–10650. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.Y.; Lu, Y.; Mushtaq, N.; Yousaf, M.; Lund, P.D.; Asghar, M.I.; Zhu, B. Designing Gadolinium-doped ceria electrolyte for low temperature electrochemical energy conversion. Int. J. Hydrog. Energy 2023, 48, 14000–14011. [Google Scholar] [CrossRef]
- Pelosato, R.; Cristiani, C.; Dotelli, G.; Latorrata, S.; Ruffo, R.; Zampori, L. Co-precipitation in aqueous medium of La0.8Sr0.2Ga0.8Mg0.2O3−δ via inorganic precursors. J. Power Sources 2010, 195, 8116–8123. [Google Scholar] [CrossRef]
- Rauf, S.; Hanif, M.B.; Mushtaq, N.; Tayyab, Z.; Ali, N.; Shah, M.Y.; Motola, M.; Saleem, A.; Asghar, M.I.; Iqbal, R. Modulating the energy band structure of the Mg-doped Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3−δ electrolyte with boosted ionic conductivity and electrochemical performance for solid oxide fuel cells. ACS Appl. Mater. Interfaces 2022, 14, 43067–43084. [Google Scholar] [CrossRef]
- Akbar, M.; Qu, G.; Yang, W.; Gao, J.; Yousaf, M.; Mushtaq, N.; Wang, X.; Dong, W.; Wang, B.; Xia, C. Fast ionic conduction and rectification effect of NaCo0.5Fe0.5O2-CeO2 nanoscale heterostructure for LT-SOFC electrolyte application. J. Alloys Compd. 2022, 924, 166565. [Google Scholar] [CrossRef]
- Li, C.; Shi, H.; Ran, R.; Su, C.; Shao, Z. Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. Int. J. Hydrogen Energy 2013, 38, 9310–9319. [Google Scholar] [CrossRef]
- Shim, J.H.; Chao, C.-C.; Huang, H.; Prinz, F.B. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem. Mater. 2007, 19, 3850–3854. [Google Scholar] [CrossRef]
- Afroze, S.; Reza, M.S.; Amin, M.; Taweekun, J.; Azad, A.K. Progress in nanomaterials fabrication and their prospects in artificial intelligence towards solid oxide fuel cells: A review. Int. J. Hydrogen Energy 2024, 52, 216–247. [Google Scholar] [CrossRef]
- Shu, L.; Sunarso, J.; Hashim, S.S.; Mao, J.; Zhou, W.; Liang, F. Advanced perovskite anodes for solid oxide fuel cells: A review. Int. J. Hydrogen Energy 2019, 44, 31275–31304. [Google Scholar] [CrossRef]
- Hou, J.; Yang, G.; Liu, W. The principles for rationally designing H-SOFC anode active layer. Mater. Res. Bull. 2022, 150, 111769. [Google Scholar] [CrossRef]
- Yildirim, F.; Timurkutluk, C.; Timurkutluk, B. Optimizing infiltration parameters of nanostructured anode electrode in solid oxide fuel cells. Ceram. Int. 2023, 49, 23642–23653. [Google Scholar] [CrossRef]
- Singh, M.; Zappa, D.; Comini, E. NiO-GDC nanowire anodes for SOFCs: Novel growth, characterization and cell performance. Mater. Adv. 2022, 3, 5922–5929. [Google Scholar] [CrossRef]
- Somacescu, S.; Cioatera, N.; Osiceanu, P.; Calderon-Moreno, J.M.; Ghica, C.; Neaţu, F.; Florea, M. Bimodal mesoporous NiO/CeO2-δ-YSZ with enhanced carbon tolerance in catalytic partial oxidation of methane—Potential IT-SOFCs anode. Appl. Catal. B Environ. 2019, 241, 393–406. [Google Scholar] [CrossRef]
- Shi, N.; Xie, Y.; Yang, Y.; Huan, D.; Pan, Y.; Peng, R.; Xia, C.; Chen, C.; Zhan, Z.; Lu, Y. Infiltrated Ni0.08Co0.02CeO2–x@ Ni0.8Co0.2 Catalysts for a Finger-Like Anode in Direct Methane-Fueled Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2021, 13, 4943–4954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Guan, K.; Meng, J.; Wei, Z.; Liu, X.; Meng, J. Enhanced anode performance and coking resistance by in situ exsolved multiple-twinned Co–Fe nanoparticles for solid oxide fuel cells. ACS Appl. Mater. Interfaces 2019, 12, 461–473. [Google Scholar] [CrossRef]
- Li, H.; Song, Y.; Xu, M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Exsolved alloy nanoparticles decorated ruddlesden–popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells. Energy Fuels 2020, 34, 11449–11457. [Google Scholar] [CrossRef]
- Choolaei, M.; Jakubczyk, E.; Horri, B.A. Synthesis and characterisation of a ceria-based cobalt-zinc anode nanocomposite for low-temperature solid oxide fuel cells (LT-SOFCs). Electrochim. Acta 2023, 445, 142057. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Z.; Lin, Z.; Cheng, L.; Zhou, Y. Nanostructured Mg-doped Mn–Cr spinel oxide cathodes for solid oxide fuel cells with optimized performance. J. Power Sources 2023, 583, 233580. [Google Scholar] [CrossRef]
- Biswas, S.; Kaur, G.; Paul, G.; Giddey, S. A critical review on cathode materials for steam electrolysis in solid oxide electrolysis. Int. J. Hydrogen Energy 2023, 48, 12541–12570. [Google Scholar] [CrossRef]
- Li, F.; Xu, Y.; Wu, Q.; Zhao, D.; Deng, M. SOFC cathode material of La1.2Sr0.8CoO4±δ with a fibrous morphology: Preparation and electrochemical performance. Int. J. Hydrogen Energy 2023, 48, 3204–3215. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Shang, Y.-B.; Li, C.-X.; Li, C.-J. Vacuum cold sprayed nanostructured La0.6Sr0.4Co0.2Fe0.8O3−δ as a high-performance cathode for porous metal-supported solid oxide fuel cells operating below 600 C. Mater. Today Energy 2021, 21, 100815. [Google Scholar] [CrossRef]
- Farhan, S.; Mohsin, M.; Raza, A.H.; Anwar, R.; Ahmad, B.; Raza, R. Co-doped cerium oxide Fe0.25−xMnxCe0.75O2−δ as a composite cathode material for IT-SOFC. J. Alloys Compd. 2022, 906, 164319. [Google Scholar] [CrossRef]
- Tang, H.; Gong, Z.; Wu, Y.; Jin, Z.; Liu, W. Electrochemical performance of nanostructured LNF infiltrated onto LNO cathode for BaZr0.1Ce0.7Y0.2O3−δ–based solid oxide fuel cell. Int. J. Hydrogen Energy 2018, 43, 19749–19756. [Google Scholar] [CrossRef]
Fuel Cell Type | Operating Temperature (°C) | Power Range (kW) | Efficiency (%) | Application Brief |
---|---|---|---|---|
PEM | 60–110 | 0.01–250 | 40–55 | Portable, mobile, low power generation. |
AFC | 70–130 | 0.1–50 | 50–70 | Mobile, space, military. |
PAFC | 175–210 | 50–1000 | 40–45 | Medium to large scale power generation and CHP (Combined Heat and Power). |
MCFC | 550–650 | 200–100,000 | 50–60 | Large scale power generation. |
SOFC | 500–1000 | 0.5–2000 | 40–72 | Vehicle auxiliary power units, medium to large scale power generation and CHP, off-grid power and micro-CHP. |
DMFC | 70–130 | 0.001–100 | 40 | Mobile, portable. |
Property | Tubular | Planar | Reference(s) |
---|---|---|---|
Power density | Lower | Higher | [38,39] |
Volumetric power density | Lower | Higher | [40,41] |
High temperature sealing | Easy | Difficult | [39] |
Start-up and shut-down | Fast | Slow | [41] |
Interconnector fabrication | Difficult | High cost | [39] |
Fabrication cost | Higher | Lower | [42] |
Fabrication simplicity | Difficult | Easy | [43] |
Long-term stability | Excellent | Fair | [43] |
Thermal cycling stability | Good | Fair | [40] |
SOFC-Components | Synthesis Method | Ionic Conductivity (S/cm) | Power density (mW/cm2) | Operating Temperature (°C) | Reference |
---|---|---|---|---|---|
Electrolyte | |||||
LSAZ | Sol–gel method | 0.319 | 1296 | 550 | [85] |
GDC | Sol–gel | 0.37 | 592 | 550 | [87] |
GDC | Chemical coprecipitation method | 0.1 | 569 | 450 | [88] |
SPFMg0.2T | Hydrothermal assisted by the coprecipitation method | 0.133 | 830 | 520 | [90] |
NCF-CeO2 | Solid-state reaction method | 0.16 | 1010 | 550 | [91] |
YSZ | Thermal inkjet printing method | No data | 860 | 800 | [92] |
YSZ | Atomic layer deposition (ALD) | No data | 28–270 | 265–350 | [93] |
Anode | |||||
Ni-YSZ | Infiltration approach | No data | 400 | 800 | [97] |
NiO-GDC | Vapor–liquid–solid (VLS) | No data | 178 | 800 | [98] |
NC-CeO2 x@NC@YSZ | Phase conversion-combined tape-casting | No data | 730 | 800 | [100] |
Fe-doping Sr2CoMo1 xFexO6−δ | In situ reduction route | No data | 993 | 850 | [101] |
Fe3Co2/RP-LSMF | Sol–gel/in situ fabrication | No data | 632–566 | 800 | [102] |
Co-GD & CoZn50-GDC | Co-precipitation method | No data | 10 & 77 | 750 | [103] |
Cathode | |||||
LSC128 | Electrostatic spinning | No data | 716 | 800 | [106] |
Mg-doped Mn–Cr spinel | Impregnation method | 3.19 | 976 | 800 | [104] |
LSCF | Vacuum cold spray (VCS) | No data | 1040 | 600 | [107] |
FMDC4 | Sol–gel method | 0.89 | 335 | 550 | [108] |
Infiltrated LNF-LNO | Infiltration method | No data | 969 | 700 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helal, H.; Ahrouch, M.; Rabehi, A.; Zappa, D.; Comini, E. Nanostructured Materials for Enhanced Performance of Solid Oxide Fuel Cells: A Comprehensive Review. Crystals 2024, 14, 306. https://doi.org/10.3390/cryst14040306
Helal H, Ahrouch M, Rabehi A, Zappa D, Comini E. Nanostructured Materials for Enhanced Performance of Solid Oxide Fuel Cells: A Comprehensive Review. Crystals. 2024; 14(4):306. https://doi.org/10.3390/cryst14040306
Chicago/Turabian StyleHelal, Hicham, Mohammadi Ahrouch, Abdelaziz Rabehi, Dario Zappa, and Elisabetta Comini. 2024. "Nanostructured Materials for Enhanced Performance of Solid Oxide Fuel Cells: A Comprehensive Review" Crystals 14, no. 4: 306. https://doi.org/10.3390/cryst14040306
APA StyleHelal, H., Ahrouch, M., Rabehi, A., Zappa, D., & Comini, E. (2024). Nanostructured Materials for Enhanced Performance of Solid Oxide Fuel Cells: A Comprehensive Review. Crystals, 14(4), 306. https://doi.org/10.3390/cryst14040306