Nickel Nanoparticles: Insights into Sintering Dynamics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental TEM Observations
3.1.1. Characterization of Initial State
3.1.2. In Situ TEM Annealing
3.1.3. Initial Stages of Annealing
3.2. Characterization by Molecular Dynamics Simulations
3.2.1. Annealing Simulations of a Four-Particle Agglomerate: Particle Motion Analysis
3.2.2. Motion of Individual Atoms
3.2.3. Diffusion Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef]
- Kuang, X.; Wang, Z.; Luo, Z.; He, Z.; Liang, L.; Gao, Q.; Li, Y.; Xia, K.; Xie, Z.; Chang, R.; et al. Ag nanoparticles enhance immune checkpoint blockade efficacy by promotion of immune surveillance in melanoma. J. Colloid Interface Sci. 2022, 616, 189–200. [Google Scholar] [CrossRef]
- Jadhav, P.; Khalid, Z.B.; Krishnan, S.; Bhuyar, P.; Zularisam, A.W.; Razak, A.S.A.; Nasrullah, M. Application of iron-cobalt-copper (Fe-Co–Cu) trimetallic nanoparticles on anaerobic digestion (AD) for biogas production. Biomass Convers. Bioref. 2024, 14, 7591–7601. [Google Scholar] [CrossRef]
- Kumar, K.H.; Venkatesh, N.; Bhowmik, H.; Kuila, A. Metallic Nanoparticle: A Review. Biomed. J. Sci. Technol. Res. 2018, 4, 3765–3775. [Google Scholar]
- Yang, C.J.; Kim, K.S.; Wu, J. Isolated Fe–Co–Ni nanoparticles in a random arrangement and their magnetic properties. J. Appl. Phys. 2001, 90, 5741–5746. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, F.; Xie, P.; Deng, S.; Xu, N.; Wang, H. Surface emission characteristics of ZnO nanoparticles. Chem. Phys. Lett. 2006, 423, 361–365. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Forootanfar, H. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variable. Colloids Surf. B Biointerfaces 2011, 87, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Parandhaman, T.; Pentela, N.; Islam, A.K.M.; Mandal, A.B.; Mukherjee, M. Understanding the Biosynthesis and Catalytic Activity of Pd, Pt, and Ag Nanoparticles in Hydrogenation and Suzuki Coupling Reactions at the Nano–Bio Interface. J. Phys. Chem. C 2014, 118, 24623–24632. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Gryczynski, I.; Gryczynski, Z.; Murphy, C.J. Luminescence Spectral Properties of CdS Nanoparticles. J. Phys. Chem. B 1999, 103, 7613–7620. [Google Scholar] [CrossRef]
- Seok, S.; Choi, M.; Lee, Y.; Jang, D.; Shin, Y.; Kim, Y.-H.; Jo, C.; Park, S. Ni Nanoparticles on Ni Core/N-Doped Carbon Shell Heterostructures for Electrocatalytic Oxygen Evolution. ACS Appl. Nano Mater. 2021, 4, 9418–9429. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, T.; Zhao, Z. Ni Nanoparticles Grown on SiO2 Supports Using a Carbon Interlayer Sacrificial Strategy for Chemoselective Hydrogenation of Nitrobenzene and m-Cresol. ACS Appl. Nano Mater. 2021, 4, 9353–9360. [Google Scholar] [CrossRef]
- Navalón, S.; Garcia, H. Nanoparticles for Catalysis. Nanomaterials 2016, 6, 123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Kuok, M.H.; Ng, S.C.; Lockwood, D.J.; Cottam, M.G.; Nielsch, K.; Wehrspohn, R.B.; Gösele, U. Spin-Wave Quantization in Ferromagnetic Nickel Nanowires. Phys. Rev. Lett. 2002, 89, 027201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.T.; Sun, C.Q. Electronic process of nitriding: Mechanism and applications. Prog. Solid State Chem. 2006, 34, 1–20. [Google Scholar] [CrossRef]
- Yoon, D.H.; Kim, S.J.; Jung, J.; Lima, H.S.; Kim, H.J. Low-voltage driving solution-processed nickel oxide based unipolar resistive switching memory with Ni nanoparticles. J. Mater. Chem. 2012, 22, 20117–20124. [Google Scholar] [CrossRef]
- Sze, J.Y.; Tay, B.K.; Pakes, C.I.; Jamieson, D.N.; Prawer, S. Conducting Ni nanoparticles in an ion-modified polymer. J. Appl. Phys. 2005, 98, 066101. [Google Scholar] [CrossRef]
- Fonseca, F.C.; Goya, G.F.; Jardim, R.F.; Muccillo, R.; Carreño, N.L.V.; Longo, E.; Leite, E.R. Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 2002, 66, 104406. [Google Scholar] [CrossRef]
- Li, Q.; Kartikowati, C.W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 2017, 7, 9894. [Google Scholar] [CrossRef]
- Hassan, M.R.; Yasmin, F.; Noor, F.K.; Rahman, M.S.; Uddin, M.S.; Bhowmik, S. Synthesis and Applications of Nickel Nanoparticles (NiNPs)—Comprehensive Review. JUC 2023, 19, 9–37. [Google Scholar] [CrossRef]
- Su, F.; Qiu, X.; Liang, F.; Tanaka, M.; Qu, T.; Yao, Y.; Ma, W.; Yang, B.; Dai, Y.; Hayashi, K.; et al. Preparation of Nickel Nanoparticles by Direct Current Arc Discharge Method and Their Catalytic Application in Hybrid Na-Air Battery. Nanomaterials 2018, 8, 684. [Google Scholar] [CrossRef]
- Pandey, A.; Manivannan, R. A Study on Synthesis of Nickel Nanoparticles Using Chemical Reduction Technique. Recent Pat. Nanomed. 2015, 5, 33–37. [Google Scholar] [CrossRef]
- Ramos, R.; Valdez, B.; Nedev, N.; Curiel, M.; Perez, O.; Salvador, J. Electric discharge synthesis of nickel nanoparticles with virtual instrument control. Instrum. Sci. Technol. 2021, 49, 499–508. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Simeonidis, K.; Vilalta-Clemente, A.; Tuna, F.; Tsiaoussis, I.; Angelakeris, M.; Dendrinou-Samara, C.; Kalogirou, O. Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. J. Magn. Magn. Mater. 2009, 321, 2723–2728. [Google Scholar] [CrossRef]
- Ahghari, M.R.; Soltaninejad, V.; Maleki, A. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci. Rep. 2020, 10, 12627. [Google Scholar] [CrossRef] [PubMed]
- Maicas, M.; Sanz, M.; Cui, H.; Aroca, C.; Sánchez, P. Magnetic properties and morphology of Ni nanoparticles synthesized in gas phase. J. Magn. Magn. Mater. 2010, 322, 3485–3489. [Google Scholar] [CrossRef]
- Kang, S.-J.L. Sintering: Densification, Grain Growth, and Microstructure; Elsevier: Oxford, UK, 2005; pp. 3–7. [Google Scholar]
- Jahani, N.; Reihanian, M.; Gheisari, K. Kinetics of recrystallization and microstructure distribution during isothermal annealing of cold rolled nickel. Mater. Res. Express 2019, 6, 096504. [Google Scholar] [CrossRef]
- Tsyganov, S.; Kästner, J.; Rellinghaus, B.; Kauffeldt, T.; Westerhoff, F.; Wolf, D. Analysis of Ni nanoparticle gas phase sintering. Phys. Rev. B 2007, 75, 045421. [Google Scholar] [CrossRef]
- Song, P.; Wen, D. Surface melting and sintering of metallic nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 8010–8017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J. Sintering phenomena and mechanical strength of nickel-based materials in direct metal laser sintering process—A molecular dynamics study. J. Mater. Res. 2016, 31, 2233–2243. [Google Scholar] [CrossRef]
- Safina, L.; Baimova, J.; Mulyukov, R. Nickel nanoparticles inside carbon nanostructures: Atomistic simulation. Mech. Adv. Mater. Mod. Process. 2019, 5, 2. [Google Scholar] [CrossRef]
- Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.J. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. Phys. D Appl. Phys. 2017, 50, 475307. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Comm. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 2022, 271, 10817. [Google Scholar] [CrossRef]
- Kavousi, S.; Novak, B.R.; Baskes, M.I.; Zaeem, M.A.; Moldovan, D. Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification. Model. Simul. Mater. Sci. Eng. 2019, 28, 015006. [Google Scholar] [CrossRef]
- Shinoda, W.; Shiga, M.; Mikami, M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 2004, 69, 134103. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Nichols, F.A. Coalescence of two spheres by surface diffusion. J. Appl. Phys. 1966, 37, 2805. [Google Scholar] [CrossRef]
- Rahbar, H. Sintering rate of nickel nanoparticles by molecular dynamics. J. Phys. Chem. 2023, 127, 6802–6812. [Google Scholar] [CrossRef]
- Kelchner, C.L.; Plimpton, S.J.; Hamilton, J.C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 1998, 58, 11085. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef]
- Arcidiacono, S.; Bieri, N.R.; Poulikakos, D.; Grigoropoulos, C.P. On the coalescence of gold nanoparticles. Int. J. Multiph. Flow 2004, 30, 979–994. [Google Scholar] [CrossRef]
- Raut, J.S.; Bhagat, R.B.; Fichthorn, K.A. Sintering of aluminum nanoparticles: A molecular dynamics study. Nanostruct. Mater. 1998, 10, 837–851. [Google Scholar] [CrossRef]
- Combe, N.; Jensen, P.; Pimpinelli, A. Changing shapes in the nanoworld. Phys. Rev. Lett. 2000, 85, 110. [Google Scholar] [CrossRef]
- Zhu, H.; Averback, R.S. Sintering of Nanoparticle Powders: Simulations and Experiments. Mater. Manuf. Process. 1996, 11, 905–923. [Google Scholar] [CrossRef]
- Iijima, S.; Ajayan, P.M. Substrate and size effects on the coalescence of small particles. J. Appl. Phys. 1991, 70, 5138–5140. [Google Scholar] [CrossRef]
- Zeng, P.; Zajac, S.; Clapp, P.C.; Rifkin, J.A. Nanoparticle sintering simulations. Mater. Sci. Eng. A 1998, 252, 301–306. [Google Scholar] [CrossRef]
Ni | Fe | Mn | Si | Cu | S | C |
---|---|---|---|---|---|---|
99.0 min | 0.40 max | 0.35 max | 0.35 max | 0.25 max | 0.01 max | 0.02 max |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajtošová, L.; Kihoulou, B.; Králík, R.; Hanuš, J.; Cieslar, M. Nickel Nanoparticles: Insights into Sintering Dynamics. Crystals 2024, 14, 321. https://doi.org/10.3390/cryst14040321
Bajtošová L, Kihoulou B, Králík R, Hanuš J, Cieslar M. Nickel Nanoparticles: Insights into Sintering Dynamics. Crystals. 2024; 14(4):321. https://doi.org/10.3390/cryst14040321
Chicago/Turabian StyleBajtošová, Lucia, Barbora Kihoulou, Rostislav Králík, Jan Hanuš, and Miroslav Cieslar. 2024. "Nickel Nanoparticles: Insights into Sintering Dynamics" Crystals 14, no. 4: 321. https://doi.org/10.3390/cryst14040321
APA StyleBajtošová, L., Kihoulou, B., Králík, R., Hanuš, J., & Cieslar, M. (2024). Nickel Nanoparticles: Insights into Sintering Dynamics. Crystals, 14(4), 321. https://doi.org/10.3390/cryst14040321