Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144
Abstract
:1. Introduction
Name | Chem. Composition | Parent Material | Structure |
---|---|---|---|
Disilicic acid I [5,16] | H2Si2O5 | α-Na2Si2O5 | cri layer |
Disilicic acid II [5] | H2Si2O5 | α-Na2Si2O6, | Unknown |
Disilicic acid III [20,21] | H2Si2O5 | KHSi2O6 | kan layers |
Disilicic acid IV [22] | H2Si2O5 | β-Na2Si2O6, | Probably kan layers |
Disilicic acid V [23] | H2Si2O5 | K2Si2O5 | Unknown |
Disilicic acid VI [23] | H2Si2O5 | Li2Si2O5 • 2.5 H2O | Unknown |
Disilicic acid (VII) [23] | H2Si2O5 | Makatite | Unknown |
H-LDS [14] | H2Si2O5 | K-LDS | kan layers |
H-kanemite [18] | H2Si2O5 | Kanemite | Probably kan layers |
H-silinaite [24] | H2Si2O5 | Silinaite, NaLiSi2O5 • 2H2O | Unknown |
Unnamed [25] | H2Si2O5 • 0.7 H2O | Na2CuSi4O10 | Unknown |
Unnamed [26] | H2Si3O7 | Na2CuSi6O14 • 5 H2O | Unknown |
Unnamed [23] | H2Si4O9 | K2Si4O9 | Unknown |
H-RUB-18 [15] | H2Si4O9 | Na-RUB-18 | Stacking disordered rwr layers |
β-H-RUB-18 [15] | H2Si4O9 | Na-RUB-18 | Unknown |
H-octosilicate [27] | H2Si4O9 | Na2[Si8O16(OH)2] • 8 H2O | Probably rwr layers |
Unnamed [7] | H2Si4O9 • 1.1 H2O | Na2Si4O9*5 H2O | Unknown |
Leached hydr. gillespite [13,17] | H4Si4O10 • 0.5 H2O | Gillespite, BaFeSi4O10 | Stacking disordered aco layers |
Unnamed [23] | H2Si8O17 • 0.5 H2O | Na2Si8O17 • x H2O | Unknown |
Unnamed [6] | H2Si8O17 •1.1 H2O | K2Si8O17 • x H2O | Unknown |
H-magadiite [3] | H2Si14O29 • 5.4 H2O | Magadiite | Unknown |
Unnamed [28] | H2Si14O29 • 5 H2O | K2Si14O29 • 5 H2O | Unknown |
H-kenyaite [4] | H2Si20O41 • x H2O | Kenyaite | Unknown |
Unnamed [29] | H2Si20O41 • x H2O | K2Si20O41 • x H2O | Unknown |
H-MCM-69 [9] | ca. [H2Si6O13] | MCM-69(p) | Probably cas layers |
H-RUB-15 [10] | [H16Si24O40] • x H2O | RUB-15 | Probably sod layers |
Silhydrite [12] | ca. 3 SiO2 • H2O | - | Unknown |
Hydrated H-apophyllite | H16Si16O40 • 8–10 H2O | Apophyllite, (K,Na)Ca4[Si8O20(F(/OH)]•8 H2O | This study |
H-carletonite | H32Si64O144 | Carletonite, KNa4Ca4[Si8O18(CO3)4(OH,F)]•H2O | This study |
- ≡Si-OH.…HO-Si(CH3)2-OH….HO-Si≡ => ≡Si-O-Si(CH3)2-O-Si≡ + 2 H2O(Layer) (Silylating agent) (Layer) (Interconnected pair of layers)
2. Materials and Methods
2.1. Synthesis
2.2. General Characterization
2.3. Structure Analysis
3. Results and Discussion
3.1. Synthesis of Hydrated H-Apophyllite and H-Carletonite
3.2. Characterization
3.3. Structural Analysis
3.3.1. Analyzing the PXRD Patterns
3.3.2. Structure Determination
3.3.3. Structure Refinement
3.3.4. Descriptions of the Structures
- The structure of Hydrated H-apophyllite
- The structure of H-carletonite
3.4. Condensation of Silicate Layers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frondel, C. Crystalline silica hydrates from leached silicates. Am. Mineral. 1979, 64, 799–804. [Google Scholar]
- Lagaly, G.; Riekert, H.M.; Kruse, H.H. Crystalline Silicic Acids. In Chemical Reactions in Organic and Inorganic Constrained Systems; Setton, R., Ed.; NATO ASI Series; Springer: Dordrecht, The Netherland, 1986; Volume 165. [Google Scholar]
- Lagaly, G.; Beneke, K.; Weiss, A. Magadiite and H-Magadiite:-I. Sodium Magadiite and Some of Its Derivatives. Am. Min. 1975, 60, 642–649. [Google Scholar]
- Beneke, K.; Lagaly, G. Kenyaite—Synthesis and properties. Am. Mineral. 1983, 68, 818–826. [Google Scholar]
- Schwarz, R.; Menner, E. Zur Kenntnis der Kieselsäuren (I.). Ber. Dtsch. Chem. Ges. 1924, 57, 1477–1481. [Google Scholar] [CrossRef]
- Iler, R.K. Ion Exchange Properties of a Crystalline Hydrated Silica. J. Colloid Sci. 1964, 19, 648–657. [Google Scholar] [CrossRef]
- Lagaly, G.; Beneke, K. New modifications of Silica. Z. Naturforsch. 1979, B34, 666–674. [Google Scholar] [CrossRef]
- Lagaly, G. Crystalline silicic acids and their interface reactions. Adv. Colloid Interface Sci. 1979, 11, 105–148. [Google Scholar] [CrossRef]
- Rollmann, L.D.; Schlenker, J.L.; Lawton, S.L.; Kennedy, C.L.; Kennedy, G.J. MCM-69, a novel layered analogue of EU-19. Microporous Mesoporous Mater. 2002, 53, 179–193. [Google Scholar] [CrossRef]
- Koike, M.; Asakura, Y.; Sugihara, M.; Kuroda, Y.; Tsuzura, H.; Wada, H.; Shimojima, A.; Kuroda, K. Topotactic Conversion of Layered Silicate RUB-15 to Silica Sodalite through Interlayer Condensation in N-Methylformamide. Dalton Trans. 2017, 46, 10232–10239. [Google Scholar] [CrossRef]
- Gude, A.J.; Shepppard, R.A. Silhydrite, 3 SiO2 · H2O, A new Mineral from Trinity County, California. Am. Mineral. 1972, 57, 1053–1065. [Google Scholar]
- Abdelouas, A.; Crovisier, J.L.; Lutze, W.; Ullman, W.J.; Risacher, F. Occurrence of Silhydrite in a Soda Lake on the Bolivian Altiplano. Clay Miner. 1995, 30, 77–82. [Google Scholar] [CrossRef]
- Lagaly, G.; Matouschek, R. The crystalline Silicic acids from Apophyllite, Carletonite and gillespite. Neues Jahrb. Mineral. Abh. 1980, 138, 81–93. [Google Scholar]
- Ikeda, T.; Uenaka, M.; Komura, K.; Sugi, Y. Structure Determination of H-LDS: An Acidified Form of the Layered Silicate K-LDS. Chem. Lett. 2010, 39, 747–749. [Google Scholar] [CrossRef]
- Borowski, M.; Marler, B.; Gies, H. The Crystal structure determination of the crystalline layered silicic acid H-RUB-18. Z. Krist. -Cryst. Mater. 2002, 217, 233–241. [Google Scholar] [CrossRef]
- Liebau, F. Über Kristallstrukturen zweier Phyllokieselsäuren H2Si2O5. Z. Krist. -Cryst. Mater. 1964, 120, 427–449. [Google Scholar] [CrossRef]
- Pabst, A. The structure of leached gillespite, a sheet silicate. Am. Mineral. 1958, 43, 970–980. [Google Scholar]
- Beneke, K.; Lagaly, G. Kanemite—Innercrystalline reactivity and relations to other sodium silicates. Am. Mineral. 1977, 62, 763–771. [Google Scholar]
- Marler, B.; Gruenewald-Lueke, A.; Ikeda, T.; Zuber, P.; Gies, H. Database of Hydrous Layer Silicates. Available online: https://www.hls-database.com (accessed on 2 March 2024).
- Wey, R.; Kalt, A. Synthèse d’une silice hydratée cristallisée. Comptes Rendus Acad. Sci. Paris 1967, 265, 1437–1440. [Google Scholar]
- Le Bihan, M.T.; Kalt, A.; Wey, R. Etude structurale de KHSi2O5 et H2Si2O5. Bull. Soc. Fr. Min. Cristallogr. 1971, 94, 15–23. [Google Scholar]
- Hubert, Y.; KaIt, A.; Guth, J.-L.; Wey, R. Acide silicique cristallisé β-H2Si2O5: Étude radiocristallographique et quelque propriétés. Comptes Rendus Acad. Sci. Paris 1976, 282D, 405–408. [Google Scholar]
- Matouschek, R. Darstellung und Charakterisierung kristalliner Kieselsäuren. PhD Thesis, Christian-Albrechts-University, Kiel, Germany, 1977. [Google Scholar]
- Beneke, K.; Thiesen, P.; Lagaly, G. Synthesis and Properties of the Sodium Lithium Silicate Silinaite. Inorg. Chem. 1995, 34, 900–907. [Google Scholar] [CrossRef]
- Guth, J.-L.; Hubert, Y.; Kalt, A.; Perati, B.; Wey, R. Un nuveau type de silice hydratée cristallisée. Comptes Rendus Acad. Sci. Paris 1978, 286D, 5–8. [Google Scholar]
- Guth, J.-L.; Hubert, Y.; Jordan, D.; Kalt, A.; Perati, B.; Wey, R. Un nouveau type de silice hydratée crystallisée, de formule H2Si3O7. C. R. Acad. Sci. Paris 1977, 285D, 1367–1370. [Google Scholar]
- Borbély, G.; Beyer, H.K.; Karge, H.G.; Schwieger, W.; Brandt, A.; Bergk, K.-H. Chemical Characterization, Structural Features, and Thermal Behavior of Sodium and Hydrogen Octosilicate. Clays Clay Miner. 1991, 39, 490–497. [Google Scholar] [CrossRef]
- Lagaly, G.; Beneke, K.; Weiss, A. Crystalline Silicic Acid H2Si14O29 · 5 H2O with Layer Structure and Capability of Formation of Intercalation Compounds. Z. Naturforsch. 1973, B28, 234–238. [Google Scholar] [CrossRef]
- Beneke, K.; Kruse, H.-H.; Lagaly, G. Eine kristalline Kieselsäure mit hoher Einlagerungsfähigkeit. Z. Anorg. Allg. Chem. 1984, 518, 65–76. [Google Scholar] [CrossRef]
- Kruse, H.-H.; Beneke, K.; Lagaly, G. Gas adsorption by a crystalline silicic acid. Colloid Polym. Sci. 1989, 267, 844–852. [Google Scholar] [CrossRef]
- Schwieger, W.; Lagaly, G. Alkali silicates and crystalline silicic acids. In Handbook of Layered Materials; Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 541–629. [Google Scholar]
- Nomi, M.; Morita, M.; Kondo, A.; Maeda, K. Interlayer Modification of a Layered Silicate RUB-18 with 4-Phosphonophenylsilane and Its Surface Acidic Functions. Inorg. Chem. 2022, 61, 5255–5261. [Google Scholar] [CrossRef] [PubMed]
- Koike, M.; Grosskreuz, I.; Asakura, Y.; Miyawaki, R.; Gies, H.; Wada, H.; Shimojima, A.; Marler, B.; Kuroda, K. Bridging the gap between zeolites and dense silica polymorphs: Formation of all-silica zeolite with high framework density from natural layered silicate magadiite. Chem. Eur. J. 2023, 29, e202301942. [Google Scholar] [CrossRef]
- Asakura, Y.; Osada, S.; Hosaka, N.; Terasawa, T.; Kuroda, K. Optimal topotactic conversion of layered octosilicate to RWR-type zeolite by separating the formation stages of interlayer condensation and elimination of organic guest molecules. Dalton Trans. 2014, 43, 10392–10395. [Google Scholar] [CrossRef]
- Moteki, T.; Chaikittisilp, W.; Sakamoto, Y.; Shimojima, A.; Okubo, T. Role of Acidic Pretreatment of Layered Silicate RUB-15 in its Topotactic Conversion into Pure Silica Sodalite. Chem. Mater. 2011, 23, 3564–3570. [Google Scholar] [CrossRef]
- Inagaki, S.; Yokoi, T.; Kubota, Y.; Tatsumi, T. Unique adsorption properties of organic-inorganic hybrid zeolite IEZ-1 with dimethylsilylene moieties. Chem. Commun. 2007, 48, 5188–5190. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Ruan, J.; Wang, L.; Wu, L.; Wang, Y.; Liu, Y.; Fan, W.; He, M.; Terasaki, O.; Tatsumi, T. Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors. J. Am. Chem. Soc. 2008, 130, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, S.; Tatsumi, T. Vapor-phase silylation for the construction of monomeric silica puncheons in the interlayer micropores of Al-MWW layered precursor. Chem. Commun. 2009, 18, 2583–2785. [Google Scholar] [CrossRef] [PubMed]
- Gies, H.; Mueller, U.; Yilmaz, B.; Tatsumi, T.; Xie, B.; Xiao, F.-S.; Bao, X.; Zhang, W.; De Vos, D. Interlayer Expansion of the Layered Zeolite Precursor RUB-39: A Universal Method To Synthesize Functionalized Microporous Silicates. Chem. Mater. 2011, 23, 2545–2554. [Google Scholar] [CrossRef]
- Thiesen, P.H.; Beneke, K.; Lagaly, G. Silylation of a crystalline silicic acid: An MAS NMR and porosity study. J. Mater. Chem. 2002, 12, 3010–3015. [Google Scholar] [CrossRef]
- Marler, B. Synthesis and structure of two new crystalline silicic acids: H-Carletonite, H32Si64O144 and Hydrated H-Apophyllite, H16Si16O40 · 8 H2O. Z. Kristallogr. Suppl. 2015, 35, 98. [Google Scholar]
- Sogo, Y.; Iizuka, F.; Yamazaki, A. Preparation and properties of layered silica and layered alumino-silica hydrate from natural apophyllite. J. Ceram. Soc. Jpn. 1998, 106, 160–168. [Google Scholar] [CrossRef]
- Colville, A.A.; Anderson, C.P.; Black, P.M. Refinement of the Crystal Structure of Apophyllite, I. X-ray Diffractionand Physical Properties. Am. Mineral. 1971, 56, 1222–1233. [Google Scholar]
- Chao, G.Y. The crystal structure of carletonite, KNa4Ca4Si8O8(CO3)4(F, OH) · H2O, A Double-Sheet Silicate. Am. Mineral. 1972 57, 765–778.
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Available online: http://www.ill.eu/sites/fullprof/index.html (accessed on 2 March 2024).
- Baerlocher, C.; Hepp, A.; Meier, W.M. DLS-76: A Program for the Simulation of Structures by Geometric Refinement; ETH: Zürich, Switzerland, 1976. [Google Scholar]
- Baur, W.H.; Fischer, R.X. The Floppiness of It All: Bond Lengths Change with Atomic Displacement Parameters and the Flexibility of Various Coordination Tetrahedra in Zeolitic Frameworks. An Empirical Structural Study of Bond Lengths and Angles. Chem. Mater. 2019, 31, 2401–2420. [Google Scholar] [CrossRef]
- Aldushin, K.; Jordan, G.; Schmahl, W.W. Kinematics of apophyllite leaching—A terrace–ledge–kink process within phyllosilicate interlayers. J. Cryst. Growth 2006, 297, 161–168. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, Z.; Schwieger, W. Vibrational spectroscopic studies of layered silicates. Chem. Mater. 1999, 11, 1210–1217. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Yeon, Y. The correlation between hydrogen-bond length and proton chemical-shifts in crystals. Acta Crystallogr. 1986, B42, 410–413. [Google Scholar] [CrossRef]
- Eckert, H.; Yesinowski, J.P.; Silver, L.A.; Stolper, E.M. Water in silicate glasses: Quantitation and structural studies by proton solid echo and magic angle spinning NMR methods. Phys. Chem. 1988, 92, 2055–2064. [Google Scholar] [CrossRef]
- Marler, B.; Gies, H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: A review. Eur. J. Miner. 2012, 24, 405–428. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B. Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 2 March 2024).
- Schreyeck, L.; Caullet, P.; Mougenel, J.C.; Guth, J.-L.; Marler, B. PREFER: A new layered (alumino) silicate precursor of FER-type zeolite. Microporous Mater. 1996, 6, 259–271. [Google Scholar] [CrossRef]
- Zanardi, S.; Alberti, A.; Cruciani, G.; Corma, A.; Fornes, V.; Brunelli, M. Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). Angew. Chem. Int. Ed. 2004, 43, 4933–4937. [Google Scholar] [CrossRef]
Layered ►► Precursor | CSA ►► | Intercalated CSA ►► | Framework Silicate | Ref. |
---|---|---|---|---|
(Na-)magadiite | H-magadiite | Methylformamide-magadiite | RWZ-1, a high density zeolite | [33] |
(Na-)octosilicate | H-octosilicate | Methylformamide-RUB-18 | RWR-type zeolite | [34] |
(TMA-)RUB-15 | H-RUB-15 | Acetic acid-RUB-15 | Silica sodalite, a clathrasil | [35] |
Temp. | Acid | Apophyllite Powder | Apophyllite Single Crystal | Carletonite Powder | Carletonite Single Crystal |
---|---|---|---|---|---|
0 °C | 0.1 M HCl | - | Nearly unchanged | - | - |
0 °C | 1.2 M HCl | Nearly unchanged | Hydrated-H-apophyllite | H-carletonite | H-carletonite |
20 °C | 1.2 M HCl | Amorphous | Amorphous | H-carletonite | H-carletonite |
0 °C | 10 M HCl | Amorphous | Amorphous | - | - |
20 °C | 10 M HCl | Amorphous | Amorphous | - | - |
20 °C | 10 M HAc | Nearly unchanged | Nearly unchanged | - | - |
Technique | 1H-29Si CP | 29Si Single Puls | 29Si Hpdec | 29Si Hpdec | 1H | 1H | 1H |
---|---|---|---|---|---|---|---|
Sample | HH-Apo fresh | HH-Apo decayed | H-Car | calc-en-H-Car | HH-Apo fresh | H-Car | Calc-en-H-Car |
Standard | TMS | TMS | TMS | TMS | TMS | TMS | TMS |
Frequency (MHz) | 79.49 | 79.49 | 79.49 | 79.49 | 400.15 | 400.15 | 400.35 |
Pulse width (10−6 s) | 25 | 25 | 25 | 25 | 4 | 2 | 4 |
Contact time (10−3 s) | 4 | - | - | - | - | - | - |
Recycle time (s) | 5 | 150 | 60 | 180 | 10 | 10 | 10 |
Spinning rate (kHz) | 4.0 | 4.0 | 4.0 | 5.0 | 7.5 | 12.5 | 12.5 |
No. of scans | 800 | 400 | 800 | 1800 | 128 | 128 | 320 |
Material | Hydrated H-Apophyllite | H-Carletonite |
---|---|---|
Unit cell content | H16Si16O40 • 8–10 H2O | H32Si64O144 |
Diffractometer | Siemens D5000 using Braun position-sensitive detector | |
Wavelength | 1.54059 Å (Cu Kα1 Radiation) | |
Sample holder | Glass capillary | |
2Θ range of data used [°] | 8.0–60.0 | 7.0–89.9 |
Step size [°2Θ] | 0.00790 | 0.00789 |
No. contributing reflections | 175 | 637 |
No. geometric restraints | 12 | 25 |
No. structural parameters | 17 | 24 |
No. profile parameters | 16 | 16 |
FWHM at ca. 25°2Θ [°2Θ] | 0.28–0.43 | 0.23–0.59 |
RF | 0.028 | 0.025 |
Rwp | 0.151 | 0.090 |
χ2 | 1.23 | 4.14 |
Space group | P 4/n c c (No. 126) | I 4/m c m (No. 140) |
a [Å] | 8.4872(2) | 13.8972(3) |
c [Å] | 16.8684(8) | 20.4677(21) |
VUC [Å3] | 1215.08(7) | 3953.0(4) |
Density (calc.) [g/cm3] | 1.757 (10 H2O) | 1.736 |
Atom | Scat. Fac. | X | y | z | Biso | Occ. |
---|---|---|---|---|---|---|
Si1 | Si | 0.0172(3) | 0.1417(4) | 0.1758(2) | 3.88(12) | 1.00000 |
O1 | O | 0.0874(10) | −0.0874(10) | 0.75000 | 5.32(13) | 1.00000 |
O2 | O | 0.0482(5) | 0.3232(4) | 0.1848(6) | 5.32(13) | 1.00000 |
O3 | O | 0.4102(9) | −0.0982(11) | 0.4001(4) | 5.32(13) | 1.00000 |
OW1 | O2− | 0.9061(16) | 0.803(2) | 0.0467(8) | 5.32(13) | 0.622(5) |
Atom | Scat. Fac. | X | y | z | Biso | Occ. |
---|---|---|---|---|---|---|
Si1 | Si | 0.09572(15) | 0.24623(14) | 0.42227(9) | 0.67(2) | 1.000 |
Si2 | Si | 0.23410(13) | 0.10375(13) | 0.35202(10) | 0.67(2) | 1.000 |
O1 | O | 0.1483(2) | 0.1557(2) | 0.3913(3) | 0.86(4) | 1.000 |
O2 | O | 0.2530(3) | 0.0092(2) | 0.3937(2) | 0.86(4) | 1.000 |
O3 | O | 0.2076(3) | 0.0849(3) | 0.27396(15) | 0.86(4) | 1.000 |
O4 | O | 0.1650(2) | 0.6650(2) | 0.3554(3) | 0.86(4) | 1.000 |
O5 | O | 0.1597(3) | 0.6597(3) | 0.0964(2) | 0.86(4) | 1.000 |
O6 | O | 0.0857(6) | 0.2265(5) | 0.50000 | 0.86(4) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marler, B.; Grosskreuz, I. Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144. Crystals 2024, 14, 326. https://doi.org/10.3390/cryst14040326
Marler B, Grosskreuz I. Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144. Crystals. 2024; 14(4):326. https://doi.org/10.3390/cryst14040326
Chicago/Turabian StyleMarler, Bernd, and Isabel Grosskreuz. 2024. "Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144" Crystals 14, no. 4: 326. https://doi.org/10.3390/cryst14040326
APA StyleMarler, B., & Grosskreuz, I. (2024). Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144. Crystals, 14(4), 326. https://doi.org/10.3390/cryst14040326