Formation and Evolution of Interfacial Structure in Al–Si–Mg/Stainless Steel Bimetals during Hot-Dipping Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Wang, Z.; Xu, H.; Zhang, G. Microstructure and Age Hardening Behavior of Al/Fe Bimetal Prepared by One-Step Compound Casting. J. Alloys Compd. 2022, 905, 164170. [Google Scholar] [CrossRef]
- Chen, Q.; Chang, X.; Qi, L.; Zheng, J.; Xie, C.; Chen, G. Interface Heterogeneity of Aluminum-Steel Bimetal Parts Manufactured via Thixotropic-Core Compound Forging. J. Mater. Process. Technol. 2022, 306, 117648. [Google Scholar] [CrossRef]
- Chang, X.; Chen, G.; Wang, B.; Chen, Q.; Zhang, H. Thixotropic-Core Compound Forging for Aluminum-Steel Bimetal Gears. J. Mater. Process. Technol. 2022, 299, 117371. [Google Scholar] [CrossRef]
- Jiang, W. Effects of Hot-Dip Galvanizing and Aluminizing on Interfacial Microstructures and Mechanical Properties of Aluminum/Iron Bimetallic Composites. J. Alloys Compd. 2016, 688, 742–751. [Google Scholar] [CrossRef]
- Mao, F.; Zhang, P.; Wei, S.; Chen, C.; Zhang, G.; Xiong, M.; Wang, T.; Guo, J.; Wang, C. Interface Microstructure and Mechanical Properties of Al/Steel Bimetallic Composites Fabricated by Liquid-Solid Casting with Rare Earth Eu Additions. Materials 2022, 15, 6507. [Google Scholar] [CrossRef] [PubMed]
- Kepa, T.; Pedraza, F.; Rouillard, F. Intermetallic Formation of Al-Fe and Al-Ni Phases by Ultrafast Slurry Aluminization (Flash Aluminizing). Surf. Coat. Technol. 2020, 397, 126011. [Google Scholar] [CrossRef]
- Dey, P.P.; Sahu, S.; Banerjee, P.S.; Ghosh, M. A Review on Metallurgical Features of Hot-Dip Aluminized Steel. Eng. Res. Express 2023, 5, 012002. [Google Scholar] [CrossRef]
- Liberski, P.; Gierek, A.; Kania, H.; Podolski, P.; Tatarek, A. Formation of Coatings from a Liquid Phase on the Surface of Iron-Base Alloys. Arch. Foundry Eng. 2008, 8, 93. [Google Scholar]
- Khalid, M.Z.; Friis, J.; Ninive, P.H.; Marthinsen, K.; Ringdalen, I.G.; Strandlie, A. Modified Embedded Atom Method Potential for Fe-Al Intermetallics Mechanical Strength: A Comparative Analysis of Atomistic Simulations. Phys. B Condens. Matter 2021, 618, 413157. [Google Scholar] [CrossRef]
- Cheng, W.-J.; Wang, C.-J. Effect of Silicon on the Formation of Intermetallic Phases in Aluminide Coating on Mild Steel. Intermetallics 2011, 19, 1455–1460. [Google Scholar] [CrossRef]
- Kim, B.-J.; Cheon, H.-S.; Lee, Y.-H.; Kim, W.-K.; Lee, Y.-S.; Kim, S.-H. Effect of Reaction Temperature and Holding Time on the Interfacial Microstructure of Al–Si–Mg/Cu Bimetals Manufactured by Hot-Dip Aluminizing. Mater. Chem. Phys. 2024, 313, 128758. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Li, X.; Wang, J.; Su, X. Effect of Silicon on Interfacial Reaction and Morphology of Hot-Dip Aluminizing. J. Mater. Res. Technol. 2022, 20, 3723–3734. [Google Scholar] [CrossRef]
- Prasanthi, T.N.; Sudha, C.; Reddy, P.S. Hot Dip Aluminization of 304L SS and P91 Ferritic-Martensitic Steel—Comparison of Interface Morphology and Growth Kinetics of Reaction Zones. Surf. Coat. Technol. 2022, 440, 128465. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Tsaur, C.-C.; Rock, J.C. Microstructure Studies of an Aluminide Coating on 9Cr-1Mo Steel during High Temperature Oxidation. Surf. Coat. Technol. 2006, 200, 6588–6593. [Google Scholar] [CrossRef]
- Divandari, M.; Vahid Golpayegani, A.R. Study of Al/Cu Rich Phases Formed in A356 Alloy by Inserting Cu Wire in Pattern in LFC Process. Mater. Des. 2009, 30, 3279–3285. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Q.; Wang, Y. Intereaction and Intermetallic Phase Formation between Aluminum and Stainless Steel. Results Phys. 2019, 12, 514–524. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, S.-Y.; Chen, Z.; Wang, M.; Ma, N.; Wang, H. Effect of Cr Content and Heat-Treatment on the High Temperature Strength of Eutectic Al–Si Alloys. J. Alloys Compd. 2015, 647, 63–69. [Google Scholar] [CrossRef]
- Shabestari, S. The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Aluminum–Silicon Alloys. Mater. Sci. Eng. A 2004, 383, 289–298. [Google Scholar] [CrossRef]
- Sha, M.; Wu, S.; Wang, X.; Wan, L. Effects of Co Addition on Fe-Bearing Intermetallic Compounds and Mechanical Properties of AlSi20Cu2Ni1Fe0.7–1 Alloys. J. Alloys Compd. 2013, 551, 468–474. [Google Scholar] [CrossRef]
- Hosseinifar, M.; Malakhov, D.V. The Sequence of Intermetallics Formation during the Solidification of an Al-Mg-Si Alloy Containing La. Met. Mater Trans A 2011, 42, 825–833. [Google Scholar] [CrossRef]
- Palm, M. The Al–Cr–Fe System–Phases and Phase Equilibria in the Al-Rich Corner. J. Alloys Compd. 1997, 252, 192–200. [Google Scholar] [CrossRef]
- Zhang, N.; Hu, Q.; Yang, F.; Lu, W.; Ding, Z.; Cao, S.; Yu, L.; Ge, X.; Li, J. Effect of Si on the Growth Behavior of the Fe2Al5 Phase at Al-xSi(Liquid)/Fe(Solid) Interface During Holding by In-Situ Synchrotron Radiography. Met. Mater Trans A 2020, 51, 2711–2718. [Google Scholar] [CrossRef]
- Xiong, W.; Selleby, M.; Chen, Q.; Odqvist, J.; Du, Y. Phase Equilibria and Thermodynamic Properties in the Fe-Cr System. Crit. Rev. Solid State Mater. Sci. 2010, 35, 125–152. [Google Scholar] [CrossRef]
- Bakke, A.O.; Arnberg, L.; Løland, J.-O.; Jørgensen, S.; Kvinge, J.; Li, Y. Formation and Evolution of the Interfacial Structure in al/Steel Compound Castings during Solidification and Heat Treatment. J. Alloys Compd. 2020, 849, 156685. [Google Scholar] [CrossRef]
- Dey, P.P.; Modak, P.; Ghosh, A.; Chakrabarti, D.; Banerjee, P.S.; Ghosh, M. Investigation of Phase Evolution of Al–Si–Mg Coating on Hot Dipped Interstitial-Free Steel. Results Mater. 2020, 6, 100078. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Sui, Y.; Wang, Q.; Ding, W. An Investigation into Interface Formation and Mechanical Properties of Aluminum–Copper Bimetal by Squeeze Casting. Mater. Des. 2016, 89, 1137–1146. [Google Scholar] [CrossRef]
- Mao, A.; Zhang, J.; Yao, S.; Wang, A.; Wang, W.; Li, Y.; Qiao, C.; Xie, J.; Jia, Y. The Diffusion Behaviors at the Cu-Al Solid-Liquid Interface: A Molecular Dynamics Study. Results Phys. 2020, 16, 102998. [Google Scholar] [CrossRef]
- Zarei, F.; Nuranian, H.; Shirvani, K. Effect of Si Addition on the Microstructure and Oxidation Behaviour of Formed Aluminide Coating on HH309 Steel by Cast-Aluminizing. Surf. Coat. Technol. 2020, 394, 125901. [Google Scholar] [CrossRef]
- Troysi, F.D.; Brito, P.P. Development and Characterization of an Iron Aluminide Coating on Mild Steel Substrate Obtained by Friction Surfacing and Heat Treatment. Int. J. Adv. Manuf. Technol. 2020, 111, 2569–2576. [Google Scholar] [CrossRef]
- Kishore, K.; Chhangani, S.; Prasad, M.J.N.V.; Bhanumurthy, K. Microstructure Evolution and Hardness of Hot Dip Aluminized Coating on Pure Iron and EUROFER 97 Steel: Effect of Substrate Chemistry and Heat Treatment. Surf. Coat. Technol. 2021, 409, 126783. [Google Scholar] [CrossRef]
- Chi, S.-H.; Chung, Y.-L. Mechanical Behavior of Functionally Graded Material Plates under Transverse Load—Part I: Analysis. Int. J. Solids Struct. 2006, 43, 3657–3674. [Google Scholar] [CrossRef]
- Bhavar, V.; Kattire, P.; Thakare, S.; patil, S.; Singh, R. A Review on Functionally Gradient Materials (FGMs) and Their Applications. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 229, 012021. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, G.; Yu, H.; Lv, W.; Wen, K.; Xu, H. Controlling Interfacial Composition and Improvement in Bonding Strength of Compound Casted Al/Steel Bimetal via Cr Interlayer. J. Mater. Res. Technol. 2023, 23, 4385–4395. [Google Scholar] [CrossRef]
- Lou, B.-S.; Chen, Y.-Y.; Wu, Z.-Y.; Kuo, Y.-C.; Duh, J.-G.; Lee, J.-W. (Fe,Mn)3AlCx κ-Carbide Formation and Characterization in Pack Aluminization of Fe–29Mn–9Al–0.9C Lightweight Steel. J. Mater. Res. Technol. 2022, 20, 1524–1532. [Google Scholar] [CrossRef]
- Kim, B.J.; Dahle, A.K.; Park, Y.H.; Lee, Y.C. The Effect of Sr Additions on Al–Cu–Si Ternary Eutectic Alloys for a High-Ductility Bimodal Microstructure. Mater. Sci. Eng. A 2022, 833, 142547. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, M.; Bian, X.; Liu, M.; Li, J. An Al–7Si Alloy/Cast Iron Bimetallic Composite with Super-High Shear Strength. J. Mater. Res. Technol. 2019, 8, 3126–3136. [Google Scholar] [CrossRef]
Alloy | Composition (wt. %) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Cr | Si | Mg | Mn | Zn | P | Ti | Pb | C | |
AC4C | Bal. | 0.151 | - | 7.630 | 0.410 | <0.003 | 0.019 | - | 0.046 | 0.013 | <0.003 |
STS420 | <0.003 | Bal. | 13.53 | 0.451 | - | 0.543 | <0.003 | 0.024 | <0.003 | <0.003 | 0.341 |
Point | Composition | Corresponding Phase | ||||
---|---|---|---|---|---|---|
Al (at.%) | Si (at.%) | Cr (at.%) | Fe (at.%) | Mn (at.%) | ||
1 | - | 0.73 | 11.90 | 87.37 | 0.82 | Fe |
2 | 63.64 | 5.96 | 4.30 | 26.10 | 0.20 | Fe2Al5(Cr) |
3 | 48.57 | 3.51 | 23.96 | 23.96 | 0.48 | Cr rich phase |
4 | 69.21 | 11.60 | 3.59 | 15.60 | - | Al8(Fe,Cr)2Si |
5 | 70.98 | 10.55 | 3.84 | 14.63 | - | Al8(Fe,Cr)2Si |
6 | 72.05 | 9.14 | 3.41 | 15.40 | - | Al8(Fe,Cr)2Si |
7 | 98.96 | 1.04 | - | - | - | Al |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-J.; Lim, H.-Y.; Kayani, S.H.; Lee, Y.-S.; Kim, S.-H.; Cha, J.-H. Formation and Evolution of Interfacial Structure in Al–Si–Mg/Stainless Steel Bimetals during Hot-Dipping Process. Crystals 2024, 14, 387. https://doi.org/10.3390/cryst14040387
Kim B-J, Lim H-Y, Kayani SH, Lee Y-S, Kim S-H, Cha J-H. Formation and Evolution of Interfacial Structure in Al–Si–Mg/Stainless Steel Bimetals during Hot-Dipping Process. Crystals. 2024; 14(4):387. https://doi.org/10.3390/cryst14040387
Chicago/Turabian StyleKim, Byung-Joo, Ha-Yoon Lim, Saif Haider Kayani, Yun-Soo Lee, Su-Hyeon Kim, and Joon-Hyeon Cha. 2024. "Formation and Evolution of Interfacial Structure in Al–Si–Mg/Stainless Steel Bimetals during Hot-Dipping Process" Crystals 14, no. 4: 387. https://doi.org/10.3390/cryst14040387
APA StyleKim, B. -J., Lim, H. -Y., Kayani, S. H., Lee, Y. -S., Kim, S. -H., & Cha, J. -H. (2024). Formation and Evolution of Interfacial Structure in Al–Si–Mg/Stainless Steel Bimetals during Hot-Dipping Process. Crystals, 14(4), 387. https://doi.org/10.3390/cryst14040387