Microstructural Optimization of Sn-58Bi Low-Temperature Solder Fabricated by Intense Pulsed Light (IPL) Irradiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Evolution during IPL Soldering
3.2. Correlation between Microstructure and Mechanical Properties of Sn-58Bi Solder
4. Conclusions
- (1)
- As the number of IPL irradiation sessions increases, the initial solder particles gradually agglomerate and aggregate into a single lump after 30 irradiation sessions. After 30–40 IPL sessions, a large number of voids was observed overall inside the T3 solder, and a small number of round voids was discovered at the interface with ENIG in T9.
- (2)
- After IPL soldering, a thin layered structure of Ni3Sn4 IMC forms at the Sn-58Bi/ENIG interface, and the P-rich layer is not prominently visible. In contrast, after reflow soldering, rod-shaped Ni3Sn4 IMCs are abundantly formed not only at the reaction interface but also within the solder bulk, accompanied by the notable presence of a P-rich layer beneath the IMC.
- (3)
- After IPL soldering, the orientation of Sn grains is situated within the intermediary region between the (001) and (110) planes. On the other hand, after reflow soldering, a dominance of orientation within the intermediate region of the (100) and (110) planes can be observed. Regarding Bi grains, the (110) orientation emerges as the predominant orientation across all specimens, irrespective of the soldering method employed.
- (4)
- During IPL soldering, as the number of irradiation sessions increases gradually, a progression from an immature to a fine to a coarsened microstructure occurs in the solder. Consequently, the mechanical strength (hardness) of the solder exhibits a tendency to initially increase slightly, before decreasing. The hardness measured in the immature stage may deviate slightly from the range predicted by the Hall–Petch relationship.
- (5)
- Based on the experimental findings, for IPL at a frequency of 3 Hz and a pulse width of 2 ms, optimal outcomes were achieved within the IPL exposure range of 40–50 sessions, characterized by a diminutive grain size, elevated hardness, and minimal IMC thickness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feldmann, K.; Franke, J.; Schüßler, F. Development of micro assembly processes for further miniaturization in electronics production. CIRP Ann. 2010, 59, 1–4. [Google Scholar] [CrossRef]
- Sitaraman, S.; Sukumaran, V.; Pulugurtha, M.R.; Wu, Z.; Suzuki, Y.; Kim, Y.; Sundaram, V.; Kim, J.; Tummala, R.R. Miniaturized bandpass filters as ultrathin 3-D IPDs and embedded thinfilms in 3-D glass modules. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1410–1418. [Google Scholar] [CrossRef]
- Kim, M.S.; Pulugurtha, M.R.; Kim, Y.; Park, G.; Cho, K.; Smet, V.; Sundaram, V.; Kim, J.; Tummala, R. Miniaturized and high-performance RF packages with ultra-thin glass substrates. Microelectron. J. 2018, 77, 66–72. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, S.; Wang, J. New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints. Mater. Des. 2020, 192, 108726. [Google Scholar] [CrossRef]
- Xiong, M.Y.; Zhang, L. Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 2019, 54, 1741–1768. [Google Scholar] [CrossRef]
- Lau, C.S.; Khor, C.Y.; Soares, D.; Teixeira, J.C.; Abdullah, M.Z. Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: A review. Solder. Surf. Mt. Technol. 2016, 39, 88. [Google Scholar] [CrossRef]
- Feng, J.; Xu, D.E.; Tian, Y.; Mayer, M. SAC305 solder reflow: Identification of melting and solidification using in-process resistance monitoring. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1623–1631. [Google Scholar] [CrossRef]
- Jung, Y.; Ryu, D.; Gim, M.; Kim, C.; Song, Y.; Kim, J.; Yoon, J.; Lee, C. Development of Next Generation Flip Chip Interconnection Technology Using Homogenized Laser-Assisted Bonding. In Proceedings of the IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 88–94. [Google Scholar]
- Tian, W.; Ma, Z.; Cao, X.; Lin, J.; Cui, Y.; Huang, X. Application of metal interconnection process with micro-LED display by laser-assisted bonding technology. J. Mater. Sci. Mater. Electron. 2023, 34, 2253. [Google Scholar] [CrossRef]
- Kim, S.; Yu, D.; Kim, Y.; Son, J.; Byun, D.; Bang, J. Interfacial Properties of Sn-Cu-xCr Alloy using Laser-Assisted Bonding. J. Weld. Join. 2023, 41, 291–298. [Google Scholar] [CrossRef]
- Jung, K.H.; Min, K.D.; Lee, C.J.; Jeong, H.; Kim, J.H.; Jung, S.B. Ultrafast Photonic Soldering with Sn–58Bi Using Intense Pulsed Light Energy. Adv. Eng. Mater. 2020, 22, 2000179. [Google Scholar] [CrossRef]
- Ha, E.; Min, K.D.; Lee, S.; Hwang, J.S.; Kang, T.; Jung, S.B. Intense Pulsed Light Soldering of Sn–3.0Ag–0.5Cu Ball Grid Array Component on Au/Pd(P)/Ni(P) Surface-Finished Printed Circuit Board and Its Drop Impact Reliability. Adv. Eng. Mater. 2023, 25, 10. [Google Scholar] [CrossRef]
- Min, K.D.; Ha, E.; Lee, S.; Hwang, J.S.; Kang, T.; Joo, J.; Jung, S.B. Proposal of intense pulsed light soldering process for improving the drop impact reliability of Sn–3.0Ag–0.5Cu ball grid array package. J. Manuf. Process. 2023, 98, 19–28. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, C.J.; Hwang, B.U.; Min, K.D.; Kim, J.H.; Jung, S.B. Microstructural evolution and mechanical properties of SAC305 with the intense pulsed light soldering process under high-temperature storage test. In Proceedings of the IEEE 71st Electronic Components and Technology Conference (ECTC), Virtual, 1 June–4 July 2021; pp. 2314–2319. [Google Scholar]
- Ho, M.J.; Li, Y.; Liu, L.; Li, Y.; Gao, C. Study of an Ultra-fast Photonic Soldering Technology without Thermal Damage in Display Module Package. SID Symp. Dig. Tech. Pap. 2021, 52, 115–118. [Google Scholar] [CrossRef]
- Jang, Y.R.; Jeong, R.; Kim, H.S.; Park, S.S. Fabrication of solderable intense pulsed light sintered hybrid copper for flexible conductive electrodes. Sci. Rep. 2021, 11, 14551. [Google Scholar] [CrossRef] [PubMed]
- Myung, W.R.; Kim, Y.; Jung, S.B. Evaluation of the bondability of the epoxy-enhanced Sn-58Bi solder with ENIG and ENEPIG surface finishes. J. Electron. Mater. 2015, 44, 4637–4645. [Google Scholar] [CrossRef]
- Choi, H.; Kim, C.L.; Sohn, Y. Diffusion Barrier Properties of the Intermetallic Compound Layers Formed in the Pt Nanoparticles Alloyed Sn-58Bi Solder Joints Reacted with ENIG and ENEPIG Surface Finishes. Materials 2022, 15, 8419. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Yoon, J.W.; Jung, S.B. Electromigration effect on Sn-58% Bi solder joints with various substrate metallizations under current stress. J. Mater. Sci. Mater. Electron. 2016, 27, 1105–1112. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Sun, H.; Yin, H.; Gao, X.; Xue, H.; Ni, D.; Bian, K.; Gu, Q. Interfacial Microstructure and Mechanical Reliability of Sn-58Bi/ENEPIG Solder Joints. Processes 2022, 10, 295. [Google Scholar] [CrossRef]
- Kim, J.; Park, D.Y.; Ahn, B.; Bang, J.; Kim, M.S.; Park, H.S.; Sohn, Y.; Ko, Y.H. Effective (Pd, Ni)Sn4 diffusion barrier to suppress brittle fracture at Sn-58Bi-xAg solder joint with Ni(P)/Pd (P)/Au metallization pad. Microelectron. Reliab. 2022, 129, 114472. [Google Scholar] [CrossRef]
- Hao, Q.; Tan, X.F.; McDonald, S.D.; Sweatman, K.; Akaiwa, T.; Nogita, K. Investigating the Effects of Rapid Precipitation of Bi in Sn on the Shear Strength of BGA Sn-Bi Alloys. J. Electron. Mater. 2024, 53, 1223–1238. [Google Scholar] [CrossRef]
- Zhou, S.; He, S.; Nishikawa, H. Effect of Zn addition on interfacial reactions and mechanical properties between eutectic Sn58Bi solder and ENIG substrate. J. Nanosci. Nanotechnol. 2020, 20, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wu, Y.; Dale, T.F.; Lakshminarayana, S.A.P.; Greene, C.V.; Badwe, N.U.; Aspandiar, R.F.; Blendell, J.E.; Subbarayan, G.; Handwerker, C.A. Influence of Pad Surface Finish on the Microstructure Evolution and Intermetallic Compound Growth in Homogeneous Sn-Bi and Sn-Bi-Ag Solder Interconnects. J. Electron. Mater. 2021, 50, 6615–6628. [Google Scholar] [CrossRef]
- Elsener, B.; Crobu, M.; Scorciapino, M.A.; Rossi, A. Electroless deposited Ni–P alloys: Corrosion resistance mechanism. J. Appl. Electrochem. 2008, 38, 1053–1060. [Google Scholar] [CrossRef]
- Liu, P.L.; Xu, Z.; Shang, J.K. Thermal stability of electroless-nickel/solder interface: Part A. Interfacial chemistry and microstructure. Metall. Mater. Trans. A 2000, 31, 2857–2866. [Google Scholar] [CrossRef]
- Lin, J.D.; Chou, C.T. The influence of phosphorus content on the microstructure and specific capacitance of etched electroless Ni-P coatings. Surf. Coat. Technol. 2019, 368, 126–137. [Google Scholar] [CrossRef]
- Alam, M.O.; Chan, Y.C.; Hung, K.C. Reliability study of the electroless Ni–P layer against solder alloy. Microelectron. Reliab. 2002, 42, 1065–1073. [Google Scholar] [CrossRef]
- Fecht, H.J.; Hellstern, E.; Fu, Z.; Johnson, W.L. Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 1990, 21, 2333. [Google Scholar] [CrossRef]
- Zheng, Z.; Chiang, P.C.; Huang, Y.T.; Wang, W.T.; Li, P.C.; Tsai, Y.H.; Chen, C.M.; Feng, S.P. Study of grain size effect of Cu metallization on interfacial microstructures of solder joints. Microelectron. Reliab. 2019, 99, 44–51. [Google Scholar] [CrossRef]
- Kang, H.; Rajendran, S.H.; Jung, J.P. Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics. Metals 2021, 11, 364. [Google Scholar] [CrossRef]
- Li, J.F.; Agyakwa, P.A.; Johnson, C.M. A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds. Intermetallics 2013, 40, 50–59. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.; Yang, S.; Fan, M.; Cheng, X. Microstructure and mechanical properties of Sn-xGa alloys and solder joints. J. Mater. Res. Technol. 2023, 26, 3830–3839. [Google Scholar] [CrossRef]
Sample ID | Frequency | Pulse Width | Number of IPL Irradiation | Total Energy | Power Consumption | Time |
---|---|---|---|---|---|---|
(Hz) | (ms) | (n) | (J/cm2) | (kWh) | (sec) | |
IPL 10 | 3 | 2 | 10 | 100 | 18 | 3.3 |
IPL 20 | 3 | 2 | 20 | 200 | 18 | 6.6 |
IPL 30 | 3 | 2 | 30 | 300 | 18 | 9.9 |
IPL 40 | 3 | 2 | 40 | 400 | 18 | 13.2 |
IPL 50 | 3 | 2 | 50 | 500 | 18 | 16.5 |
IPL 60 | 3 | 2 | 60 | 600 | 18 | 19.8 |
IPL 70 | 3 | 2 | 70 | 700 | 18 | 23.1 |
reflow | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, H.; Noh, T.; Jung, S.-B.; Sohn, Y. Microstructural Optimization of Sn-58Bi Low-Temperature Solder Fabricated by Intense Pulsed Light (IPL) Irradiation. Crystals 2024, 14, 465. https://doi.org/10.3390/cryst14050465
Go H, Noh T, Jung S-B, Sohn Y. Microstructural Optimization of Sn-58Bi Low-Temperature Solder Fabricated by Intense Pulsed Light (IPL) Irradiation. Crystals. 2024; 14(5):465. https://doi.org/10.3390/cryst14050465
Chicago/Turabian StyleGo, Hyeri, Taejoon Noh, Seung-Boo Jung, and Yoonchul Sohn. 2024. "Microstructural Optimization of Sn-58Bi Low-Temperature Solder Fabricated by Intense Pulsed Light (IPL) Irradiation" Crystals 14, no. 5: 465. https://doi.org/10.3390/cryst14050465
APA StyleGo, H., Noh, T., Jung, S. -B., & Sohn, Y. (2024). Microstructural Optimization of Sn-58Bi Low-Temperature Solder Fabricated by Intense Pulsed Light (IPL) Irradiation. Crystals, 14(5), 465. https://doi.org/10.3390/cryst14050465