Al-Rich Titanites from Mont Blanc Alpine Fissures: Evidence of Ti-Nb-Y-REE Mobility during Water–Rock Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local Geology
2.2. Historical Works
2.3. Analytical Methods
3. Results
3.1. Petrography
3.2. Crystal Chemistry Data
3.2.1. Major Elements
3.2.2. Trace Elements
3.3. Raman Spectra
4. Discussion
4.1. Incorporation of Trace Elements into the Titanite Structure
4.2. Raman Data
4.3. Mechanism of Titanite Formation
4.4. Origin of Nb, Y, and REE in Titanite
5. Conclusions
- -
- Euhedral titanites from several alpine fissures on Mont Blanc, particularly those of Périades and Courtes, provide some essential information about element transfers related to the development of alpine fissures in the Mont Blanc massif.
- -
- Titanites crystallised at the end of the crystallisation of the principal quartz in the alpine fissures (Qtz2 stage) and are synchronous with the crystallisation of green biotites and albite, around 400 ± 20 °C.
- -
- As they predate the deposition of chlorites, titanites mark the transition between the biotite and chlorite stability domains in the Mont Blanc massif.
- -
- The titanites are rich in Al. OH dominates the OH-F site, as fluorine remains relatively low or is absent, such as in the Courtes sample. They are thus quite different from magmatic titanites characterised by high Fe and F contents.
- -
- Titanites show a wide range of concentrations of trace elements such as Nb, Y, Zr, Sn, and REE. Although some sectorial zoning could explain differences in the distribution of concentrations, these elements are generally positively correlated. No simple relation could be established with the titanite structure, as most Raman spectra display remarkable similarities, apart from two bands at 603 and 881 cm−1 with varying intensities.
- -
- The granite allanite, partly destabilised into epidote, is the most likely source of Nb, Y, Zr, Sn, and REE. Titanites are characterised by rare-earth spectra enriched in HREE and show variations in LREE depending on the location in the Mont Blanc massif. They are, therefore, excellent markers of element transfer in medium-temperature retrograde metamorphism for elements generally considered relatively immobile, such as Ti, Zr, and Nb.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Wt. % | Al2O3 | SiO2 | CaO | TiO2 | Fe2O3 | Y2O3 | Nb2O3 | ZrO2 | F | Total |
---|---|---|---|---|---|---|---|---|---|---|
Périades | 1.22 | 30.06 | 28.58 | 38.56 | 0.17 | 0.78 | 1.16 | 0.31 | 0.00 | 100.99 |
Périades | 1.24 | 30.49 | 28.41 | 38.38 | 0.16 | 0.75 | 1.29 | 0.26 | 0.00 | 101.12 |
Périades | 1.25 | 30.41 | 28.42 | 38.24 | 0.14 | 0.86 | 1.36 | 0.26 | 0.00 | 101.07 |
Périades | 1.30 | 30.26 | 27.97 | 37.93 | 0.22 | 0.81 | 1.62 | 0.22 | 0.00 | 100.53 |
Périades | 1.13 | 31.25 | 28.34 | 39.71 | 0.13 | 0.99 | 0.75 | 0.00 | 0.00 | 102.42 |
Périades | 1.36 | 30.45 | 28.37 | 37.65 | 0.30 | 0.78 | 1.83 | 0.30 | 0.00 | 101.31 |
Périades | 1.44 | 30.23 | 28.16 | 37.55 | 0.28 | 0.76 | 1.85 | 0.28 | 0.00 | 100.80 |
Périades | 1.47 | 30.11 | 28.52 | 37.73 | 0.30 | 0.93 | 1.60 | 0.20 | 0.00 | 101.13 |
Périades | 1.45 | 29.79 | 28.11 | 37.66 | 0.26 | 0.84 | 1.66 | 0.21 | 0.00 | 100.21 |
Périades | 1.57 | 30.04 | 28.08 | 37.91 | 0.03 | 0.92 | 1.76 | 0.05 | 0.00 | 100.39 |
Périades | 1.54 | 30.18 | 28.46 | 37.56 | 0.20 | 0.82 | 1.84 | 0.19 | 0.00 | 100.97 |
Périades | 1.55 | 29.96 | 28.52 | 37.23 | 0.11 | 0.77 | 2.13 | 0.23 | 0.00 | 100.60 |
Périades | 1.54 | 30.25 | 28.39 | 37.26 | 0.27 | 0.75 | 2.25 | 0.18 | 0.00 | 101.13 |
Périades | 1.58 | 30.48 | 28.43 | 38.30 | 0.16 | 0.78 | 1.64 | 0.07 | 0.00 | 101.58 |
Périades | 1.70 | 30.25 | 28.56 | 37.88 | 0.33 | 0.71 | 1.72 | 0.07 | 0.00 | 101.52 |
Périades | 1.73 | 30.54 | 28.59 | 38.68 | 0.07 | 0.28 | 0.42 | 0.07 | 0.00 | 100.44 |
Périades | 1.53 | 30.12 | 28.32 | 37.52 | 0.11 | 0.75 | 1.99 | 0.30 | 0.00 | 100.74 |
Périades | 1.52 | 30.25 | 28.46 | 38.26 | 0.20 | 0.82 | 1.40 | 0.34 | 0.00 | 101.43 |
Périades | 1.47 | 30.48 | 28.58 | 38.41 | 0.30 | 0.79 | 1.26 | 0.25 | 0.00 | 101.81 |
Périades | 1.22 | 30.25 | 28.55 | 38.69 | 0.21 | 0.76 | 0.82 | 0.17 | 0.00 | 100.86 |
Courtes | 2.84 | 30.47 | 29.51 | 37.35 | 0.73 | 0.00 | 0.00 | 0.00 | 0.49 | 102.05 |
Courtes | 2.83 | 30.67 | 29.53 | 37.14 | 0.58 | 0.00 | 0.00 | 0.00 | 0.50 | 101.77 |
Courtes | 3.25 | 30.73 | 29.39 | 36.59 | 0.61 | 0.00 | 0.08 | 0.01 | 0.62 | 101.83 |
Courtes | 3.57 | 30.80 | 29.48 | 36.47 | 0.62 | 0.00 | 0.00 | 0.00 | 0.67 | 102.17 |
Courtes | 3.38 | 30.58 | 29.62 | 36.81 | 0.60 | 0.00 | 0.04 | 0.05 | 0.53 | 102.15 |
Courtes | 3.36 | 30.68 | 29.40 | 36.41 | 0.57 | 0.00 | 0.00 | 0.00 | 0.52 | 101.45 |
Courtes | 3.32 | 30.26 | 29.15 | 36.44 | 0.66 | 0.00 | 0.01 | 0.07 | 0.55 | 101.05 |
Courtes | 3.14 | 29.98 | 29.25 | 36.69 | 0.63 | 0.00 | 0.00 | 0.08 | 0.52 | 100.86 |
Courtes | 3.07 | 30.86 | 29.65 | 37.20 | 0.44 | 0.00 | 0.00 | 0.00 | 0.54 | 102.16 |
Courtes | 3.22 | 30.75 | 29.39 | 37.03 | 0.49 | 0.00 | 0.00 | 0.06 | 0.52 | 101.90 |
Courtes | 3.48 | 31.05 | 29.22 | 35.94 | 0.76 | 0.00 | 0.00 | 0.00 | 1.23 | 102.36 |
Courtes | 3.60 | 31.27 | 28.86 | 35.31 | 0.81 | 0.00 | 0.00 | 0.00 | 0.82 | 101.40 |
Courtes | 3.17 | 31.11 | 29.13 | 36.45 | 0.48 | 0.00 | 0.00 | 0.00 | 0.84 | 101.61 |
Charlet Straton | 4.04 | 30.06 | 26.21 | 29.67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 89.98 |
Charlet Straton | 2.96 | 25.58 | 27.32 | 33.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 89.75 |
Charlet Straton | 5.50 | 33.89 | 24.63 | 31.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 95.07 |
Charlet Straton | 5.91 | 30.96 | 31.10 | 32.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 99.99 |
Charlet Straton | 3.49 | 28.85 | 30.51 | 37.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
Petites Jorasses | 8.26 | 33.64 | 27.24 | 26.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 97.41 |
Petites Jorasses | 6.72 | 32.97 | 28.66 | 31.65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
A. du Tour | 7.66 | 33.53 | 29.44 | 29.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
A.du Tour | 7.94 | 32.34 | 29.39 | 30.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
A. du Tour | 7.75 | 33.32 | 30.46 | 28.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.01 |
References
- McLeod, G.W.; Dempster, T.J.; Faithfull, J.W. Deciphering magma-mixing processes using zoned titanite from the Ross of Mull Granite, Scotland. J. Petrol. 2010, 52, 55–82. [Google Scholar] [CrossRef]
- John, T.; Klemd, R.; Klemme, S.; Pfänder, J.; Elis Hoffmann, J.; Gao, J. Nb–Ta fractionation by partial melting at the titanite–rutile transition. Contrib. Mineral. Petrol. 2011, 161, 35–45. [Google Scholar] [CrossRef]
- Bonamici, C.E.; Kozdon, R.; Ushikubo, T.; Valley, J.X. High-resolution P-T-t paths from δ18O zoning in titanite: A snapshot of late-orogenic collapse in the Grenville of New York. Geology 2011, 39, 959–962. [Google Scholar] [CrossRef]
- Kowallis, B.J.; Christiansen, E.H.; Dorais, M.J.; Winkel, A.; Henze, P.; Franzen, L.; Mosher, H. Variation of Fe, Al, and F Substitution in Titanite (Sphene). Geosciences 2022, 12, 229. [Google Scholar] [CrossRef]
- Jung, S.; Hellebrand, E. Textural, geochronological and chemical constraints from polygenetic titanite and monogenetic apatite from a mid-crustal shear zone: An integrated EPMA, SIMS, and TIMS study. Chem. Geol. 2007, 241, 88–107. [Google Scholar] [CrossRef]
- Laurent, O.; Zeh, A.; Gerdes, A.; Villaros, A.; Gros, K.; Słaby, E. How do granitoid magmas mix with each other? Insights from textures, trace elements and Sr-Nd isotopic composition of apatite and titanite from the Matok Pluton (South Africa). Contrib. Mineral. Petrol. 2017, 172, 80. [Google Scholar] [CrossRef]
- Henze, P.K.; Christiansen, E.H.; Kowallis, B.J.; Dorais, M.J.; Mosher, H.D.; Franzen, L.M.; Martin, A.J.; Nabelek, P.I. Titanite geochemistry and textures: Implications for magmatic and post-magmatic processes in the Notch Peak and Little Cottonwood granitic intrusions, Utah. Am. Mineral. 2022, 108, 226–248. [Google Scholar] [CrossRef]
- Bernau, V.R.; Franz, G. Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. Can. Mineral. 1987, 25, 695–705. [Google Scholar]
- Enami, M.; Suzuki, K.; Liou, J.G.; Bird, D.K. Al–Fe3+ and F–OH substitutions in titanite and constraints on their P–T dependence. Eur. J. Mineral. 1993, 5, 219–231. [Google Scholar] [CrossRef]
- Hu, H.; Li, J.; McFarlane, C.R.M.; Nasdala, L.; Broska, I. Hydrothermal titanite from the Chengchao iron skarn deposit; temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating. Mineral. Petrol. 2017, 111, 593–608. [Google Scholar] [CrossRef]
- Leloup, P.H.; Arnaud, N.; Sobel, E.R.; Lacassin, R. Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc. Tectonics 2005, 24, 4. [Google Scholar] [CrossRef]
- Fabre, C.; Boiron, M.-C.; Dubessy, J.; Cathelineau, M.; Banks, D.A. Paleo-fluid chemistry of a single fluid event: A bulk and in-situ multi-technique analysis (LIBS, Raman spectroscopy) of an Alpine fluid. Chem. Geol. 2002, 182, 249–264. [Google Scholar] [CrossRef]
- Rolland, Y.; Rossi, M. Two-stage fluid flow and element transfers in shear zones during collision burial-exhumation cycle: Insights from the Mont Blanc Crystalline Massif (Western Alps). J. Geodyn. 2016, 101, 88–108. [Google Scholar] [CrossRef]
- Rolland, Y.; Cox, S.; Boullier, A.-M.; Pennacchioni, G.; Mancktelow, N. Rare earth and trace element mobility in mid-crustal shear zones: Insights from the Mont Blanc Massif (Western Alps). Earth Planet. Sci. Lett. 2003, 214, 203–219. [Google Scholar] [CrossRef]
- Bussy, F.; Schaltegger, U.; Marro, C. The age of the Mont-Blanc granite (Western Alps): A heterogeneous system dated by Rb-Sr whole-rock determinations on its microgranular enclaves. Schweiz. Mineral. Petrogr. Mitt. 1989, 69, 3–313. [Google Scholar]
- Cenki-Tok, B.; Darling, J.; Rolland, Y.; Dhuime, B.; Storey, C. Direct dating of mid-crustal shear zones with synkinematic allanite: New in-situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif. Terra Nova 2012, 26, 29–37. [Google Scholar] [CrossRef]
- Poty, B.; Stalder, H.A.; Weisbrod, A. Fluid inclusions studies in quartz from fissures of western and central Alps. Schweiz. Mineral. Petrogr. Mitt. 1974, 54, 717–752. [Google Scholar]
- Marshall, D.; Pfeifer, H.R.; Hunziker, J.C.; Kirschner, D. A pressure-temperature-time path for the NE Mont-Blanc massif: Fluid-inclusion: Isotopic and thermobarometric evidence. Eur. J. Mineral. 1998, 10, 1227–12240. [Google Scholar] [CrossRef]
- Cathelineau, M.; Ayt Ougougdal, M.; Banks, D.; Lespinasse, M.; Boiron, M.C.; Poty, B. Fluid inputs and mass transfer during Alpine brittle deformation of the Mont-Blanc granite. Bol. Soc. Esp. Miner. 1995, 18, 34–35. [Google Scholar]
- Poty, B.; Cathelineau, M. La formation des cristaux dans les fentes alpines du massif du Mont-Blanc. Règne Mineral, Hors Série V «Minéralogie du Massif du Mont Blanc. 1999, pp. 19–21. Available online: https://www.minerauxetfossiles.com/produit/le-regne-mineral-hors-serie-1999-mineralogie-du-massif-du-mont-blanc-2/ (accessed on 18 April 2024).
- Hauy, R.J. Traité de minéralogie. In Sphène; Conseil des Mines, Louis imp.: Paris, France, 1801; Volume 3, pp. 114–119. [Google Scholar]
- Lacroix, A. Minéralogie de la France. In Particular Sphène; Librairie Polytechnique, Baudry et Cie: Paris, France, 1896; Volume 2, pp. 233–254. [Google Scholar]
- Patton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Oberti, R.; Smith, D.C.; Rossi, G.; Caucia, F. The crystal-chemistry of high-aluminium titanites. Eur. J. Mineral. 1991, 3, 777–792. [Google Scholar] [CrossRef]
- Gu, J.; Xu, B.; Li, S.; Zhao, Y. Titanite Spectroscopy and In Situ LA-ICP-MS U–Pb Geochronology of Mogok, Myanmar. Crystals 2022, 12, 1050. [Google Scholar] [CrossRef]
- Krüger, H.; Többens, D.M.; Tropper, P.; Haefeker, U.; Kahlenberg, V.; Fuchs, M.R.; Olieric, V.; Troitzsch, U. Single-crystal structure and Raman spectroscopy of synthetic titanite analog CaAlSiO4F. Miner. Petrol. 2015, 109, 631–641. [Google Scholar] [CrossRef]
- Sahama, T.G. On the chemistry of the mineral titanite. CR Soc. Geol. Finl. 1946, 19, 88–120. [Google Scholar]
- Frost, B.R.; Chamberlain, K.R.; Schumacher, J.C. Sphene (titanite): Phase relations and role as a geochronometer. Chem. Geol. 2000, 172, 131–148. [Google Scholar] [CrossRef]
- Kohn, M.J. Titanite petrochronology—Chapter 13. In Petrochronology: Methods and Applications; Reviews in Mineralogy & Geochemistry; Kohn, M.J., Engi, M., Lanari, P., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2017; Volume 83, pp. 419–442. [Google Scholar]
- Tiepolo, M.; Oberti, R.; Vannucci, R. Trace-element incorporation in titanite: Constraints from experimentally determined solid/liquid partition coefficients. Chem. Geol. 2002, 191, 105–119. [Google Scholar] [CrossRef]
- Higgens, J.B.; Ribbe, P.H. The crystal chemistry and space groups of natural and synthetic titanites. Am. Mineral. 1976, 61, 878–888. [Google Scholar]
- RRUFF Database. Available online: https://rruff.info/titanite (accessed on 15 November 2023).
Wt.% | Périades | Courtes | Charlet St. | P. Jorasses | Ag.du Tour | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 30.11 | 30.31 | 30.17 | 30.19 | 31.27 | 30.71 | 30.61 | 30.49 | 30.96 | 32.97 | 33.32 |
CaO | 28.34 | 28.05 | 28.26 | 29.65 | 28.86 | 28.67 | 28.86 | 28.32 | 31.10 | 28.66 | 30.46 |
TiO2 | 39.28 | 38.14 | 38.67 | 40.15 | 35.31 | 35.23 | 37.76 | 37.30 | 32.02 | 31.65 | 28.48 |
Al2O3 | 1.32 | 1.72 | 2.11 | 1.02 | 3.60 | 3.80 | 1.65 | 1.70 | 5.91 | 6.72 | 7.75 |
Fe2O3 | 0.11 | 0.17 | 0.16 | 0.10 | 0.81 | 0.63 | 0.44 | 0.33 | 0.00 | 0.00 | 0.00 |
Y2O3 | 1.29 | 0.78 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nb2O3 | 0.45 | 0.23 | 0.13 | 0.02 | 0.00 | 0.00 | 1.16 | 0.99 | 0.00 | 0.00 | 0.00 |
ZrO2 | 0.13 | 0.04 | 0.10 | 0.00 | 0.00 | 0.00 | 0.30 | 0.39 | 0.00 | 0.00 | 0.00 |
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.82 | 0.96 | 0.52 | 0.54 | 0.00 | 0.00 | 0.00 |
total | 101.05 | 99.62 | 100.61 | 101.43 | 99.77 | 98.98 | 99.28 | 98.11 | 99.99 | 100.00 | 100.01 |
a.p.f.u. | |||||||||||
Si | 0.98 | 1.00 | 0.98 | 0.98 | 1.02 | 1.01 | 0.99 | 1.00 | 1.01 | 1.06 | 1.07 |
Ca | 0.99 | 0.99 | 0.99 | 1.03 | 1.00 | 1.01 | 1.00 | 1.00 | 1.08 | 0.98 | 1.05 |
Ti | 0.96 | 0.94 | 0.95 | 0.98 | 0.86 | 0.87 | 0.92 | 0.92 | 0.78 | 0.76 | 0.69 |
Al | 0.05 | 0.07 | 0.08 | 0.04 | 0.14 | 0.15 | 0.06 | 0.07 | 0.23 | 0.25 | 0.29 |
Fe | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Y | 0.02 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nb | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 |
Zr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 |
ppm | V | Cr | Mn | Sr | Y | Zr | Nb | Sn | Hf | Ta | W | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Périades | |||||||||||||
PER2-1 | 142.8 | 12.2 | 470.7 | 38.9 | 2342.1 | 41.9 | 317.2 | 122.3 | 1.96 | 6.35 | 6.28 | 5.1 | 12.7 |
PER2-2 | 145.3 | 12.1 | 398.4 | 36.8 | 2252.2 | 33.6 | 203.5 | 108.6 | 1.67 | 6.15 | 2.40 | 2.8 | 7.6 |
PER2-3 | 141.9 | 13.8 | 372.0 | 36.7 | 1570.0 | 20.5 | 118.7 | 86.3 | 1.08 | 4.03 | 1.6 | 4.4 | |
PER2-4 | 135.9 | 15.2 | 356.1 | 33.3 | 354.2 | 2.3 | 21.2 | 45.6 | 0.00 | 0.34 | 0.2 | 0.7 | |
PER2-5 | 140.5 | 15.0 | 353.5 | 34.8 | 353.8 | 3.3 | 29.1 | 51.1 | 0.39 | 0.8 | |||
PER2-6 | 78.5 | 5.9 | 365.1 | 40.5 | 912.5 | 200.4 | 1313.6 | 425.9 | 8.95 | 27.6 | 1.24 | 0.6 | 1.5 |
PER2-7 | 79.0 | 5.4 | 365.0 | 40.2 | 863.1 | 190.0 | 1252.3 | 422.1 | 9.22 | 28.8 | 1.57 | 0.6 | 1.4 |
PER2-8 | 83.7 | 6.1 | 379.7 | 40.7 | 967.1 | 196.8 | 1162.5 | 449.9 | 8.92 | 18.7 | 5.71 | 0.9 | 1.9 |
PER2-9 | 85.1 | 5.6 | 371.8 | 39.8 | 925.8 | 212.9 | 1359.0 | 428.5 | 10.59 | 24.4 | 3.04 | 1.0 | 1.8 |
PER2-10 | 84.1 | 5.3 | 367.8 | 41.5 | 904.7 | 243.6 | 1462.2 | 423.5 | 13.80 | 37.6 | 1.73 | 0.9 | 1.8 |
PER2-11 | 80.0 | 5.4 | 344.7 | 45.7 | 1434.2 | 740.2 | 2313.9 | 720.6 | 34.44 | 93.9 | 1.14 | 2.7 | 4.4 |
PER2-12 | 82.3 | 6.0 | 334.1 | 49.7 | 1563.2 | 967.8 | 2691.8 | 839.7 | 43.48 | 122.2 | 1.27 | 3.2 | 4.7 |
PER2-13 | 77.6 | 5.0 | 344.3 | 52.5 | 1495.7 | 1420.1 | 3690.7 | 1143.2 | 57.60 | 163.5 | 1.21 | 4.7 | 6.2 |
PER2-14 | 81.4 | 5.5 | 322.8 | 52.1 | 1489.1 | 842.6 | 2300.2 | 796.1 | 46.47 | 150.8 | 2.1 | 2.8 | |
PER1-1 | 79.3 | 5.1 | 352.2 | 58.9 | 1414.1 | 1339.4 | 4506.5 | 1078.0 | 58.72 | 169.3 | 0.52 | 3.8 | 4.9 |
PER1-2 | 67.8 | 5.3 | 369.1 | 53.6 | 1735.6 | 1790.3 | 4857.6 | 1365.7 | 62.15 | 141.9 | 2.04 | 6.4 | 11.5 |
PER1-3 | 65.3 | 6.8 | 463.5 | 55.4 | 3208.8 | 44.6 | 2411.9 | 551.1 | 1.87 | 38.38 | 85.8 | 18.3 | 41.4 |
PER1-4 | 84.0 | 12.3 | 605.4 | 50.7 | 3276.9 | 102.5 | 2054.6 | 605.5 | 4.87 | 28.2 | 55.4 | 12.4 | 76.9 |
PER1-5 | 98.0 | 9.5 | 500.5 | 49.5 | 2831.4 | 53.3 | 1637.6 | 417.6 | 2.15 | 23.3 | 123.1 | 15.3 | 41.2 |
PER1-6 | 138.4 | 12.5 | 452.5 | 38.0 | 2246.6 | 43.9 | 393.1 | 125.8 | 1.89 | 7.40 | 6.50 | 5.1 | 12.9 |
PER1-7 | 151.8 | 9.8 | 377.0 | 37.8 | 1623.8 | 22.2 | 150.8 | 96.9 | 1.17 | 4.80 | 1.46 | 1.8 | 5.1 |
PER1-8 | 167.4 | 13.3 | 351.1 | 36.5 | 231.4 | 1.4 | 24.6 | 44.0 | 0.00 | 0.08 | 0.4 | ||
Courtes | |||||||||||||
B-1 | 430.8 | 42.2 | 305.2 | 21.1 | 187.8 | 21.0 | 109.5 | 137.1 | 1.24 | 3.17 | 1.27 | 7.4 | |
B-2 | 383.9 | 71.5 | 375.5 | 26.3 | 1111.4 | 213.8 | 1735.6 | 742.3 | 6.88 | 6.98 | 269.8 | 717.5 | |
B-3 | 384.0 | 64.9 | 305.6 | 27.9 | 1279.0 | 38.2 | 1917.8 | 406.4 | 1.48 | 8.67 | 65.62 | 0.7 | 148.6 |
B-4 | 473.0 | 58.2 | 289.9 | 20.3 | 772.0 | 51.0 | 531.1 | 178.7 | 1.68 | 2.36 | 63.04 | 93.1 | |
B-5 | 473.9 | 59.4 | 308.7 | 21.7 | 802.5 | 59.5 | 692.8 | 252.4 | 1.94 | 3.30 | 76.84 | 0.1 | 159.1 |
B-6 | 445.1 | 55.6 | 287.1 | 20.8 | 720.7 | 54.0 | 509.7 | 225.1 | 0.69 | 2.39 | 60.78 | 82.0 | |
B-7 | 462.4 | 61.1 | 309.1 | 23.9 | 887.2 | 35.3 | 993.3 | 265.1 | 5.06 | 51.55 | 0.0 | 60.1 | |
C-1 | 442.2 | 19.7 | 239.3 | 22.3 | 208.9 | 25.6 | 115.3 | 156.0 | 1.07 | 3.14 | 1.53 | 3.9 | |
C-2 | 418.3 | 52.6 | 234.4 | 18.2 | 432.5 | 18.2 | 137.3 | 116.5 | 0.76 | 3.70 | 0.0 | 8.3 | |
C-3 | 405.4 | 47.0 | 249.6 | 19.1 | 580.4 | 47.9 | 276.3 | 198.6 | 2.29 | 1.51 | 6.85 | 15.1 | |
C-4 | 504.0 | 39.9 | 334.0 | 21.8 | 1040.3 | 127.5 | 1025.3 | 374.9 | 5.37 | 4.37 | 100.7 | 415.6 | |
C-5 | 382.7 | 62.9 | 335.9 | 25.5 | 1032.5 | 97.5 | 1727.8 | 475.4 | 4.67 | 9.69 | 80.4 | 0.0 | 105.2 |
C-6 | 435.0 | 91.6 | 364.5 | 24.0 | 1171.4 | 178.2 | 1080.0 | 706.2 | 10.53 | 5.23 | 2907.2 | 0.0 | 144.2 |
C-7 | 399.4 | 68.9 | 305.2 | 23.6 | 909.8 | 169.0 | 920.5 | 606.7 | 8.58 | 3.66 | 2285.0 | 94.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cathelineau, M.; Peiffert, C. Al-Rich Titanites from Mont Blanc Alpine Fissures: Evidence of Ti-Nb-Y-REE Mobility during Water–Rock Interactions. Crystals 2024, 14, 472. https://doi.org/10.3390/cryst14050472
Cathelineau M, Peiffert C. Al-Rich Titanites from Mont Blanc Alpine Fissures: Evidence of Ti-Nb-Y-REE Mobility during Water–Rock Interactions. Crystals. 2024; 14(5):472. https://doi.org/10.3390/cryst14050472
Chicago/Turabian StyleCathelineau, Michel, and Chantal Peiffert. 2024. "Al-Rich Titanites from Mont Blanc Alpine Fissures: Evidence of Ti-Nb-Y-REE Mobility during Water–Rock Interactions" Crystals 14, no. 5: 472. https://doi.org/10.3390/cryst14050472
APA StyleCathelineau, M., & Peiffert, C. (2024). Al-Rich Titanites from Mont Blanc Alpine Fissures: Evidence of Ti-Nb-Y-REE Mobility during Water–Rock Interactions. Crystals, 14(5), 472. https://doi.org/10.3390/cryst14050472