Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.2. Synthesis of Li(dhd)
2.3. Synthesis of Mn2(dhd)4(iPrOH)2 (1)
2.4. Synthesis of Mn4(dhd)4(OEt)4(EtOH)4 (2)
2.5. Synthesis of Mn4(dhd)6(OMe)2(MeOH)2 (3)
2.6. X-ray Crystallographic Procedures
3. Results and Discussion
3.1. Synthesis
3.2. Single Crystal Structures of 1, 2 and 3
3.3. Electronic Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.-Z.; Sellitto, E.; Yap, G.P.A.; Sheats, J.; Dismukes, G.C. Trapping an Elusive Intermediate in Manganese−Oxo Cubane Chemistry. Inorg. Chem. 2004, 43, 5795–5797. [Google Scholar] [CrossRef]
- Sessoli, R.; Tsai, H.L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Lampropoulos, C.; Koo, C.; Hill, S.O.; Abboud, K.; Christou, G. Synthesis, Magnetism, and High-Frequency EPR Spectroscopy of a Family of Mixed-Valent Cuboctahedral Mn13 Complexes with 1,8-Naphthalenedicarboxylate Ligands. Inorg. Chem. 2008, 47, 11180–11190. [Google Scholar] [CrossRef]
- Brechin, E.K.; Clegg, W.; Murrie, M.; Parsons, S.; Teat, S.J.; Winpenny, R.E.P. Nanoscale Cages of Manganese and Nickel with “Rock Salt” Cores. J. Am. Chem. Soc. 1998, 120, 7365–7366. [Google Scholar] [CrossRef]
- Soler, M.; Wernsdorfer, W.; Folting, K.; Pink, M.; Christou, G. Single-Molecule Magnets: A Large Mn30 Molecular Nanomagnet Exhibiting Quantum Tunneling of Magnetization. J. Am. Chem. Soc. 2004, 126, 2156–2165. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Abboud, K.A.; Wernsdorfer, W.; Christou, G. “Spin Tweaking” of a High-Spin Molecule: An Mn25 Single-Molecule Magnet with an S = 61/2 Ground State. Angew. Chem. Int. Ed. 2007, 46, 884–888. [Google Scholar] [CrossRef]
- Manoli, M.; Alexandrou, S.; Pham, L.; Lorusso, G.; Wernsdorfer, W.; Evangelisti, M.; Christou, G.; Tasiopoulos, A.J. Magnetic “Molecular Oligomers” Based on Decametallic Supertetrahedra: A Giant Mn49 Cuboctahedron and its Mn25Na4 Fragment. Angew. Chem. Int. Ed. 2016, 55, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Tasiopoulos, A.J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2117–2121. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H.; Clérac, R.; Wernsdorfer, W.; Lecren, L.; Bonhomme, C.; Sugiura, K.-i.; Yamashita, M. A Dimeric Manganese(III) Tetradentate Schiff Base Complex as a Single-Molecule Magnet. Angew. Chem. Int. Ed. 2004, 43, 2801–2805. [Google Scholar] [CrossRef] [PubMed]
- Lecren, L.; Roubeau, O.; Coulon, C.; Li, Y.-G.; Le Goff, X.F.; Wernsdorfer, W.; Miyasaka, H.; Clérac, R. Slow Relaxation in a One-Dimensional Rational Assembly of Antiferromagnetically Coupled [Mn4] Single-Molecule Magnets. J. Am. Chem. Soc. 2005, 127, 17353–17363. [Google Scholar] [CrossRef]
- Zhou, C.-L.; Wang, Z.-M.; Wang, B.-W.; Gao, S. A Oximato-Bridged Linear Trinuclear [MnIVMnIIIMnIV] Single-Molecule Magnet. Dalton Trans. 2012, 41, 13620–13625. [Google Scholar] [CrossRef] [PubMed]
- Dismukes, G.C.; Brimblecombe, R.; Felton, G.A.N.; Pryadun, R.S.; Sheats, J.E.; Spiccia, L.; Swiegers, G.F. Development of Bioinspired Mn4O4−Cubane Water Oxidation Catalysts: Lessons from Photosynthesis. Acc. Chem. Res. 2009, 42, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Hocking, R.K.; Brimblecombe, R.; Chang, L.-Y.; Singh, A.; Cheah, M.H.; Glover, C.; Casey, W.H.; Spiccia, L. Water-Oxidation Catalysis by Manganese in a Geochemical-Like Cycle. Nat. Chem. 2011, 3, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Holm, R.H.; Lo, W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem. Rev. 2016, 116, 13685–13713. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Mandal, S.K.; Bhaduri, S.; Armstrong, W.H. Manganese Clusters with Relevance to Photosystem II. Chem. Rev. 2004, 104, 3981–4026. [Google Scholar] [CrossRef] [PubMed]
- Chernev, P.; Fischer, S.; Hoffmann, J.; Oliver, N.; Assunção, R.; Yu, B.; Burnap, R.L.; Zaharieva, I.; Nürnberg, D.J.; Haumann, M.; et al. Light-Driven Formation of Manganese Oxide by Today’s Photosystem II Supports Evolutionarily Ancient Manganese-Oxidizing Photosynthesis. Nat. Commun. 2020, 11, 6110. [Google Scholar] [CrossRef] [PubMed]
- Mayilmurugan, R.; Suresh, E.; Palaniandavar, M. A New Tripodal Iron(III) Monophenolate Complex: Effects of Ligand Basicity, Steric Hindrance, and Solvent on Regioselective Extradiol Cleavage. Inorg. Chem. 2007, 46, 6038–6049. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.-P.; Kong, X.-J.; Hu, X.-Y.; Sun, M.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Influence of Steric Hindrance of Organic Ligand on the Structure of Keggin-Based Coordination Polymer. Inorg. Chem. 2006, 45, 4016–4023. [Google Scholar] [CrossRef] [PubMed]
- SAINT. Part of Bruker APEX3 Software Package, (Version 2016.9-0); Bruker AXS: Billerica, MA, USA, 2016.
- SADABS. Part of Bruker APEX3 Software Package, (Version 2016.9-0); Bruker AXS: Billerica, MA, USA, 2016.
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Heitz, S.; Aksu, Y.; Merschjann, C.; Driess, M. Methylmagnesium Alkoxide Clusters with Mg4O4 Cubane- and Mg7O8 Biscubane-Like Cores: Organometallic Precursors for Low-Temperature Formation of MgO Nanoparticles with Variable Surface Defects. Chem. Mater. 2010, 22, 1376–1385. [Google Scholar] [CrossRef]
- Kitos, A.A.; Papatriantafyllopoulou, C.; Tasiopoulos, A.J.; Perlepes, S.P.; Escuer, A.; Nastopoulos, V. Binding of Ligands Containing Carbonyl and Phenol Groups to Iron(III): New Fe6, Fe10 and Fe12 Coordination Clusters. Dalton Trans. 2017, 46, 3240–3251. [Google Scholar] [CrossRef] [PubMed]
- Serna, Z.; De la Pinta, N.; Urtiaga, M.K.; Lezama, L.; Madariaga, G.; Clemente-Juan, J.M.; Coronado, E.; Cortés, R. Defective Dicubane-like Tetranuclear Nickel(II) Cyanate and Azide Nanoscale Magnets. Inorg. Chem. 2010, 49, 11541–11549. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wei, Z.; Barry, M.C.; Filatov, A.S.; Dikarev, E.V. Heterometallic Molecular Precursors for a Lithium–Iron Oxide Material: Synthesis, Solid State Structure, Solution and Gas-Phase Behaviour, and Thermal Decomposition. Dalton Trans. 2017, 46, 5644–5649. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Han, H.; Filatov, A.S.; Dikarev, E.V. Changing the Bridging Connectivity Pattern within a Heterometallic Assembly: Design of Single-Source Precursors with Discrete Molecular Structures. Chem. Sci. 2014, 5, 813–818. [Google Scholar] [CrossRef]
- Ruettinger, W.F.; Campana, C.; Dismukes, G.C. Synthesis and Characterization of Mn4O4L6 Complexes with Cubane-like Core Structure: A New Class of Models of the Active Site of the Photosynthetic Water Oxidase. J. Am. Chem. Soc. 1997, 119, 6670–6671. [Google Scholar] [CrossRef]
- Nguyen, A.I.; Ziegler, M.S.; Oña-Burgos, P.; Sturzbecher-Hohne, M.; Kim, W.; Bellone, D.E.; Tilley, T.D. Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. J. Am. Chem. Soc. 2015, 137, 12865–12872. [Google Scholar] [CrossRef] [PubMed]
- Tsaroucha, M.; Aksu, Y.; Irran, E.; Driess, M. Synthesis of Stannyl-Substituted Zn4O4 Cubanes as Single-Source Precursors for Amorphous Tin-Doped ZnO and Zn2SnO4 Nanocrystals and Their Potential for Thin Film Field Effect Transistor Applications. Chem. Mater. 2011, 23, 2428–2438. [Google Scholar] [CrossRef]
- Piga, F.; Moro, F.; Krivokapic, I.; Blake, A.J.; Edge, R.; McInnes, E.J.L.; Evans, D.J.; McMaster, J.; Van Slageren, J. Magnetic Properties of a Novel Family of Ferrous Cubanes. Chem. Commun. 2012, 48, 2430–2432. [Google Scholar] [CrossRef] [PubMed]
- Navulla, A.; Huynh, L.; Wei, Z.; Filatov, A.S.; Dikarev, E.V. Volatile Single-Source Molecular Precursor for the Lithium Ion Battery Cathode. J. Am. Chem. Soc. 2012, 134, 5762–5765. [Google Scholar] [CrossRef]
- Magnus, P.; Payne, A.H.; Waring, M.J.; Scott, D.A.; Lynch, V. Conversion of α, β-Unsaturated Ketones into α-Hydroxy Ketones Using an MnIII Catalyst, Phenylsilane and Dioxygen: Acceleration of Conjugate Hydride Reduction by Dioxygen. Tetrahedron Lett. 2000, 41, 9725–9730. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 |
---|---|---|---|
CCDC | 2351735 | 2351736 | 2351734 |
Moiety Formula | C38H68Mn2O10·C3H8O | C48H96Mn4O16 | C52H92Mn4O16 |
Formula weight | 854.89 | 1149 | 1193.01 |
Temperature (K) | 150 | 150 | 150 |
Wavelength (Å) | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Triclinic | Monoclinic | Monoclinic |
Space group | P | P21/n | P21/n |
a (Å) | 10.621(2) | 17.5839(13) | 14.0445(8) |
b (Å) | 13.017(3) | 17.189(10) | 14.7969(8) |
c (Å) | 19.727(5) | 21.0431(15) | 15.6796(8) |
α (°) | 77.996(5) | 90 | 90 |
β (°) | 88.842(4) | 107.029(2) | 107.7926(2) |
γ (°) | 67.691(4) | 90 | 90 |
V (Å3) | 2462.81(10) | 6081.52(7) | 3102.581(3) |
Z | 2 | 4 | 2 |
ρcalcd (g·cm−3) | 1.153 | 1.255 | 1.277 |
μ (mm−1) | 0.562 | 0.869 | 0.854 |
F(000) | 920 | 2448 | 1264 |
θ range for data collection (°) | 1.058–25.098 | 2.422–21.124 | 2.75–25.53 |
Reflections collected | 10,566 | 38,019 | 27,346 |
Independent reflections | 7479 (Rint = 0.0764) | 11115 (Rint = 0.1252) | 8309 (Rint = 0.0855) |
Transmission factors (min/max) | 0.602/0.745 | 0.888/0.942 | 0.679/0.746 |
Data/restraints/params. | 10,566/198/591 | 11,115/378/807 | 8309/3/342 |
R1 a, wR2 b (I > 2σ(I)) | 0.0640/0.1465 | 0.0708/0.1592 | 0.0525/0.1016 |
R1 a, wR2 b (all data) | 0.0455/0.1230 | 0.1235/0.2098 | 0.0855/0.1272 |
Goodness-of-fit c | 1.077 | 1.043 | 1.030 |
Largest diff. peak and hole (ē·Å−3) | 0.447 and −0.442 | 0.683 and −0.382 | 0.531 and −0.448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhou, Z.; Han, H. Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals 2024, 14, 478. https://doi.org/10.3390/cryst14050478
He Y, Zhou Z, Han H. Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals. 2024; 14(5):478. https://doi.org/10.3390/cryst14050478
Chicago/Turabian StyleHe, Yan, Zheng Zhou, and Haixiang Han. 2024. "Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures" Crystals 14, no. 5: 478. https://doi.org/10.3390/cryst14050478
APA StyleHe, Y., Zhou, Z., & Han, H. (2024). Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals, 14(5), 478. https://doi.org/10.3390/cryst14050478