Demonstration of HCl-Based Selective Wet Etching for N-Polar GaN with 42:1 Selectivity to Al0.24Ga0.76N
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. N-Polar UID GaN
3.2. N-Polar Al0.24Ga0.76N
3.3. N-Polar Deep-Recess HEMT
3.4. NPDR HEMT Transmission Line Measurement Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, M.H.; Keller, S.; Nidhi; Dasgupta, S.; Denninghoff, D.J.; Kolluri, S.; Brown, D.F.; Lu, J.; Fichtenbaum, N.A.; Ahmadi, E.; et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond. Sci. Technol. 2013, 28, 074009. [Google Scholar] [CrossRef]
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs. IEEE Trans. Electron Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
- Akso, E.; Collins, H.; Clymore, C.; Li, W.; Guidry, M.; Romanczyk, B.; Wurm, C.; Liu, W.; Hatui, N.; Hamwey, R.; et al. First Demonstration of Four-Finger N-polar GaN HEMT Exhibiting Record 712-mW Output Power With 31.7% PAE at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 683–686. [Google Scholar] [CrossRef]
- Li, W.; Romanczyk, B.; Guidry, M.; Akso, E.; Hatui, N.; Wurm, C.; Liu, W.; Shrestha, P.; Collins, H.; Clymore, C.; et al. Record RF Power Performance at 94 GHz From Millimeter-Wave N-Polar GaN-on-Sapphire Deep-Recess HEMTs. IEEE Trans. Electron Devices 2023, 70, 2075–2080. [Google Scholar] [CrossRef]
- Buttari, D.; Chini, A.; Chakraborty, A.; Mccarthy, L.; Xing, H.; Palacios, T.; Shen, L.; Keller, S.; Mishra, U.K. Selective dry etching of Gan over Algan in Bcl3/SF6 mixtures. Int. J. High Speed Electron. Syst. 2004, 14, 756–761. [Google Scholar] [CrossRef]
- Pearton, S.J.; Shul, R.J.; Ren, F. A Review of Dry Etching of GaN and Related Materials. Mrs Internet J. Nitride Semicond. Res. 2000, 5, e11. [Google Scholar] [CrossRef]
- Cuerdo, R.; Pei, Y.; Chen, Z.; Keller, S.; DenBaars, S.P.; Calle, F.; Mishra, U.K. The Kink Effect at Cryogenic Temperatures in Deep Submicron AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2009, 30, 209–212. [Google Scholar] [CrossRef]
- Buttari, D.; Heikman, S.; Keller, S.; Mishra, U.K. Digital Etching for Highly Reproducible Low Damage Gate Recessing on AlGaN/GaN HEMTs. In Proceedings of the IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA, 8 August 2002; pp. 461–469. [Google Scholar] [CrossRef]
- Burnham, S.D.; Boutros, K.; Hashimoto, P.; Butler, C.; Wong, D.W.; Hu, M.; Micovic, M. Gate-recessed normally-off GaN-on- Si HEMT using a new O2-BCl3 digital etching technique. Phys. Status Solidi 2010, 7, 2010–2012. [Google Scholar] [CrossRef]
- Wu, J.; Lei, S.; Cheng, W.C.; Sokolovskij, R.; Wang, Q.; Xia, G.M.; Yu, H. Oxygen-based digital etching of AlGaN/GaN structures with AlN as etch-stop layers. J. Vac. Sci. Technol. Vacuum. Surfaces Film. 2019, 37, 060401. [Google Scholar] [CrossRef]
- Ruel, S.; Pimenta-Barros, P.; Roux, F.L.; Chauvet, N.; Massardier, M.; Thoueille, P.; Tan, S.; Shin, D.; Gaucher, F.; Posseme, N. Atomic layer etching of GaN using Cl2 and He or Ar plasma. J. Vac. Sci. Technol. Vacuum. Surfaces Film. 2021, 39, 022601. [Google Scholar] [CrossRef]
- Shih, P.C.; Engel, Z.; Ahmad, H.; Doolittle, W.A.; Palacios, T. Wet-based digital etching on GaN and AlGaN. Appl. Phys. Lett. 2022, 120, 022101. [Google Scholar] [CrossRef]
- Ho, W.Y.; Chow, Y.C.; Biegler, Z.; Qwah, K.S.; Tak, T.; Wissel-Garcia, A.; Liu, I.; Wu, F.; Nakamura, S.; Speck, J.S. Atomic layer etching (ALE) of III-nitrides. Appl. Phys. Lett. 2023, 123, 062102. [Google Scholar] [CrossRef]
- Zhuang, D.; Edgar, J. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. Rep. 2005, 48, 1–46. [Google Scholar] [CrossRef]
- Visconti, P.; Huang, D.; Reshchikov, M.; Yun, F.; Cingolani, R.; Smith, D.; Jasinski, J.; Swider, W.; Liliental-Weber, Z.; Morkoç, H. Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques. Mater. Sci. Eng. 2002, 93, 229–233. [Google Scholar] [CrossRef]
- Fujii, T.; Gao, Y.; Sharma, R.; Hu, E.L.; DenBaars, S.P.; Nakamura, S. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 2004, 84, 855–857. [Google Scholar] [CrossRef]
- Gao, Y.; Fujii, T.; Sharma, R.; Fujito, K.; Denbaars, S.P.; Nakamura, S.; Hu, E.L. Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching. Jpn. J. Appl. Phys. 2004, 43, L637. [Google Scholar] [CrossRef]
- Gao, Y.; Craven, M.D.; Speck, J.S.; Baars, S.P.D.; Hu, E.L. Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride. Appl. Phys. Lett. 2004, 84, 3322–3324. [Google Scholar] [CrossRef]
- Qi, S.L.; Chen, Z.Z.; Fang, H.; Sun, Y.J.; Sang, L.W.; Yang, X.L.; Zhao, L.B.; Tian, P.F.; Deng, J.J.; Tao, Y.B.; et al. Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4. Appl. Phys. Lett. 2009, 95, 071114. [Google Scholar] [CrossRef]
- Keller, S.; DenBaars, S.P. Metalorganic chemical vapor deposition of group III nitrides—A discussion of critical issues. J. Cryst. Growth 2003, 248, 479–486. [Google Scholar] [CrossRef]
- Han, S.C.; Kim, J.K.; Kim, J.Y.; Kim, K.K.; Tampo, H.; Niki, S.; Lee, J.M. Formation of Hexagonal Pyramids and Pits on V-/VI-Polar and III-/II-Polar GaN/ZnO Surfaces by Wet Etching. J. Electrochem. Soc. 2010, 157, D60. [Google Scholar] [CrossRef]
- Keller, S.; Fichtenbaum, N.A.; Wu, F.; Brown, D.; Rosales, A.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition. J. Appl. Phys. 2007, 102, 083546. [Google Scholar] [CrossRef]
- Ng, H.M.; Weimann, N.G.; Chowdhury, A. GaN nanotip pyramids formed by anisotropic etching. J. Appl. Phys. 2003, 94, 650–653. [Google Scholar] [CrossRef]
- Jung, Y.; Ahn, J.; Baik, K.H.; Kim, D.; Pearton, S.J.; Ren, F.; Kim, J. Chemical Etch Characteristics of N-Face and Ga-Face GaN by Phosphoric Acid and Potassium Hydroxide Solutions. J. Electrochem. Soc. 2011, 159, H117–H120. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Liu, Z.; Yi, X.; Yuan, G.; Wang, G. N-polar GaN etching and approaches to quasi-perfect micro-scale pyramid vertical light-emitting diodes array. J. Appl. Phys. 2013, 114, 133101. [Google Scholar] [CrossRef]
- Stocker, D.A.; Schubert, E.F.; Redwing, J.M. Crystallographic wet chemical etching of GaN. Appl. Phys. Lett. 1998, 73, 2654–2656. [Google Scholar] [CrossRef]
- Li, D.; Sumiya, M.; Fuke, S.; Yang, D.; Que, D.; Suzuki, Y.; Fukuda, Y. Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy. J. Appl. Phys. 2001, 90, 4219–4223. [Google Scholar] [CrossRef]
- Weyher, J.; Brown, P.; Rouvière, J.; Wosinski, T.; Zauner, A.; Grzegory, I. Recent advances in defect-selective etching of GaN. J. Cryst. Growth 2000, 210, 151–156. [Google Scholar] [CrossRef]
- Sangwal, K. Etching of crystals: Theory, experiment, and application. In Defects in Solids; v. 15; North-Holland: Amsterdam, The Netherlands, 1987; Volume 15. [Google Scholar]
- Wienecke, S.; Romanczyk, B.; Guidry, M.; Li, H.; Zheng, X.; Ahmadi, E.; Hestroffer, K.; Megalini, L.; Keller, S.; Mishra, U.K. N-Polar Deep Recess MISHEMTs With Record 2.9 W/mm at 94 GHz. IEEE Electron Device Lett. 2016, 37, 713–716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayede, E.; Akso, E.; Romanczyk, B.; Hatui, N.; Sayed, I.; Khan, K.; Collins, H.; Keller, S.; Mishra, U.K. Demonstration of HCl-Based Selective Wet Etching for N-Polar GaN with 42:1 Selectivity to Al0.24Ga0.76N. Crystals 2024, 14, 485. https://doi.org/10.3390/cryst14060485
Kayede E, Akso E, Romanczyk B, Hatui N, Sayed I, Khan K, Collins H, Keller S, Mishra UK. Demonstration of HCl-Based Selective Wet Etching for N-Polar GaN with 42:1 Selectivity to Al0.24Ga0.76N. Crystals. 2024; 14(6):485. https://doi.org/10.3390/cryst14060485
Chicago/Turabian StyleKayede, Emmanuel, Emre Akso, Brian Romanczyk, Nirupam Hatui, Islam Sayed, Kamruzzaman Khan, Henry Collins, Stacia Keller, and Umesh K. Mishra. 2024. "Demonstration of HCl-Based Selective Wet Etching for N-Polar GaN with 42:1 Selectivity to Al0.24Ga0.76N" Crystals 14, no. 6: 485. https://doi.org/10.3390/cryst14060485
APA StyleKayede, E., Akso, E., Romanczyk, B., Hatui, N., Sayed, I., Khan, K., Collins, H., Keller, S., & Mishra, U. K. (2024). Demonstration of HCl-Based Selective Wet Etching for N-Polar GaN with 42:1 Selectivity to Al0.24Ga0.76N. Crystals, 14(6), 485. https://doi.org/10.3390/cryst14060485