Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cosine Functions and Linear Chains of Atoms
3.2. Electronic Band Structures for Superlattices
3.3. Antibonding-Bonding Asymmetry
3.4. Revised Tight-Binding Equations
3.5. Superlattice Nesting Vectors and Key Phonon Wavevectors
Coherent Electron–Phonon Coupling via Acoustic Nesting
3.6. Phonon Frequencies and the Superconducting Gap Energy
The Isotope Effect for CaC6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patterson, J.; Bailey, B. Solid-State Physics: Introduction to the Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ferreira, R. Chapter 1: Introduction to Semiconductor Heterostructures. In Semiconductor Modelling Techniques; Mari, X., Balkan, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 159. [Google Scholar]
- Ivchenko, E.L.; Pikus, G.E. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- He, F.; Zhou, Y.; Ye, Z.; Cho, S.H.; Jeong, J.; Meng, X.; Wang, Y. Moiré patterns in 2D materials: A review. ACS Nano 2021, 15, 5944–5958. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lai, J.M.; Zhang, J. Review of phonons in moiré superlattices. J. Semicond. 2023, 44, 011902. [Google Scholar] [CrossRef]
- Li, Y.; Wan, Q.; Xu, N. Recent Advances in Moiré Superlattice Systems by Angle-Resolved Photoemission Spectroscopy. Adv. Mater. 2023, 2305175. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Talantsev, E.F.; Mataira, R.C.; Crump, W.P. Classifying superconductivity in Moiré graphene superlattices. Sci. Rep. 2020, 10, 212. [Google Scholar] [CrossRef]
- Mangold, M.A.; Holleitner, A.W.; Agustsson, J.S.; Calame, M. Nanoparticle Arrays. In Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Cargnello, M.; Johnston-Peck, A.C.; Diroll, B.T.; Wong, E.; Datta, B.; Damodhar, D.; Doan-Nguyen, V.V.T.; Herzing, A.A.; Kagan, C.R.; Murray, C.B. Substitutional doping in nanocrystal superlattices. Nature 2015, 524, 450. [Google Scholar] [CrossRef]
- Yazdani, N.; Jansen, M.; Bozyigit, D.; Lin, W.M.M.; Volk, S.; Yarema, O.; Yarema, M.; Juranyi, F.; Huber, S.D.; Wood, V. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 2019, 10, 4236. [Google Scholar] [CrossRef]
- Yang, S.L.; Sobota, J.A.; Howard, C.A.; Pickard, C.J.; Hashimoto, M.; Lu, D.H.; Mo, S.K.; Kirchmann, P.S.; Shen, Z.X. Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nat. Commun. 2014, 5, 3493. [Google Scholar] [CrossRef] [PubMed]
- Logvenov, G.; Bonmassar, N.; Christiani, G.; Campi, G.; Valletta, A.; Bianconi, A. The Superconducting Dome in Artificial High-Tc Superlattices Tuned at the Fano–Feshbach Resonance by Quantum Design. Condens. Matter 2023, 8, 78–84. [Google Scholar] [CrossRef]
- Bianconi, A. Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. Inc. Nov. Magn. 2005, 18, 626–636. [Google Scholar] [CrossRef]
- Bianconi, A.; Valletta, A.; Perali, A.; Saini, N.L. High Tc superconductivity in a superlattice of quantum stripes. Solid State Commun. 1997, 102, 369–374. [Google Scholar] [CrossRef]
- Bianconi, A.; Di Castro, D.; Agrestini, S.; Campi, G.; Saini, N.L.; Saccone, A.; De Negri, S.; Giovannini, M. A superconductor made by a metal heterostructure at the atomic limit tuned at the ‘shape resonance’: MgB2. J. Phys. Condens. Matter 2001, 13, 7383–7390. [Google Scholar] [CrossRef]
- Sboychakov, A.O.; Kugel, K.I.; Bianconi, A. Moiré-like Superlattice Generated van Hove Singularities in a Strained CuO2 Double Layer. Condens. Matter 2022, 7, 50–59. [Google Scholar] [CrossRef]
- Alarco, J.A.; Gupta, B.; Shahbazi, M.; Appadoo, D.; Mackinnon, I.D.R. THz/Far infrared synchrotron observations of superlattice frequencies in MgB2. Phys. Chem. Chem. Phys. 2021, 23, 23922–23932. [Google Scholar] [CrossRef] [PubMed]
- Alarco, J.A.; Chou, A.; Talbot, P.C.; Mackinnon, I.D.R. Phonon Modes of MgB2: Super-lattice Structures and Spectral Response. Phys. Chem. Chem. Phys. 2014, 16, 24443–24456. [Google Scholar] [CrossRef] [PubMed]
- Alarco, J.A.; Mackinnon, I.D.R. Phonon dispersions as indicators of dynamic symmetry reduction in superconductors. In Phonons in Low Dimensional Structures; Stavrou, V.N., Ed.; InTech Open: London, UK, 2018; pp. 75–101. [Google Scholar]
- Alarco, J.A.; Mackinnon, I.D.R. Superlattices, Bonding-Antibonding, Fermi Surface Nesting, and Superconductivity. Condens. Matter 2023, 8, 72. [Google Scholar] [CrossRef]
- Sugawara, K.; Sato, T.; Takahashi, T. Fermi-surface-dependent superconducting gap in C6Ca. Nat. Phys. 2009, 5, 40–43. [Google Scholar] [CrossRef]
- Valla, T.; Pan, Z. Superconductivity and Electron-Phonon Coupling in Graphite Intercalation Compunds. In Physics and Applications of Graphene-Experiments; IntechOpen: London, UK, 2011. [Google Scholar]
- Askerzade, I. Unconventional Superconductors—Anisotropy and Multiband Effects; Springer: Berlin/Heidelberg, Germany, 2012; Volume 153. [Google Scholar]
- Askerzade, I.N. Effect of Coulomb Repulsion on the Critical Temperature in Layered Superconductors with Arbitrary Layer Thicknesses. J. Korean Phys.Soc. 2004, 45, 475–478. [Google Scholar]
- Askerzade, I.N. Reviews of Topical Problems—Study of layered superconductors in the theory of an electron—Phonon coupling mechanism. Phys. Uspekhi 2009, 52, 977–988. [Google Scholar] [CrossRef]
- Csányi, G.; Littlewood, P.B.; Nevidomskyy, A.H. The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat. Phys. 2005, 1, 42–45. [Google Scholar] [CrossRef]
- Mazin, I. Intercalant-driven superconductivity in YbC6 and CaC6. Phys. Rev. Lett. 2005, 95, 227001. [Google Scholar] [CrossRef] [PubMed]
- Calandra, M.; Mauri, F. Theoretical Explanation of Superconductivity in CaC6. Phys. Rev. Lett. 2005, 95, 237002. [Google Scholar] [CrossRef] [PubMed]
- Sanna, A.; Profeta, G.; Floris, A.; Marini, A.; Gross, E.; Massidda, S. Anisotropic gap of superconducting CaC6: A first-principles density functional calculation. Phys. Rev. B 2007, 75, 020511. [Google Scholar] [CrossRef]
- Boeri, L.; Bachelet, G.B.; Giantomassi, M.; Andersen, O.K. Electron-phonon interaction in graphite intercalation compounds. Phys. Rev. B 2007, 76, 064510. [Google Scholar] [CrossRef]
- Lamura, G.; Aurino, M.; Cifariello, G.; Di Gennaro, E.; Andreone, A.; Emery, N.; Hérold, C.; Marêché, J.F.; Lagrange, P. Experimental Evidence of s-Wave Superconductivity in Bulk CaC6. Phys. Rev. Lett. 2006, 96, 107008. [Google Scholar] [CrossRef] [PubMed]
- Canadell, E.; Doublet, M.-L.; Lung, C. Orbital Approach to the Electronic Structure of Solids; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Evarestov, R.A.; Smirnov, V.P. Site Symmetry in Crystals: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 108. [Google Scholar]
- Emery, N.; Hérold, C.; d’Astuto, M.; Garcia, V.; Bellin, C.; Marêché, J.F.; Lagrange, P.; Loupias, G. Superconductivity of Bulk CaC6. Phys. Rev. Lett. 2005, 95, 087003. [Google Scholar] [CrossRef] [PubMed]
- Weller, T.E.; Ellerby, M.; Saxena, S.S.; Smith, R.P.; Skipper, N.T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nat. Phys. 2005, 1, 39–41. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Wang, B.; Bianconi, A.; Mackinnon, I.D.R.; Alarco, J.A. Superlattices Reveal Electronic Topological Transition in CaC6 with Pressure. Crystals 2024, in press. [Google Scholar]
- Mackinnon, I.D.R.; Almutairi, A.; Alarco, J.A. Insights from systematic DFT calculations on superconductors. In Real Perspectives of Fourier Transforms and Current Developments in Superconductivity; Arcos, J.M.V., Ed.; IntechOpen Ltd.: London, UK, 2021; pp. 1–29. [Google Scholar] [CrossRef]
- Bartók, A.P.; Yates, J.R. Ultrasoft pseudopotentials with kinetic energy density support: Implementing the Tran-Blaha potential. Phys. Rev. B 2019, 99, 235103. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Alarco, J.A.; Talbot, P.C.; Mackinnon, I.D.R. Comparison of functionals for metal hexaboride band structure calculations. Mod. Numer. Sim. Mater. Sci. 2014, 4, 53–69. [Google Scholar] [CrossRef]
- Alarco, J.A.; Shahbazi, M.; Talbot, P.C.; Mackinnon, I.D.R. Spectroscopy of metal hexaborides: Phonon dispersion models. J. Raman Spect. 2018, 49, 1985–1998. [Google Scholar] [CrossRef]
- Klingshirn, C.F.; Klingshirn, C.F. Crystals, Lattices, Lattice Vibrations and Phonons. In Semiconductor Optics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–166. [Google Scholar]
- Deymier, P.A. Acoustic Metamaterials and Phononic Crystals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 173. [Google Scholar]
- Grüner, G. Density Waves in Solids; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Ferry, D.K. Semiconductors: Bonds and Bands; IoP Publishing: Bristol, UK, 2019. [Google Scholar]
- Huebener, R.P. Conductors, Semiconductors, Superconductors; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Campi, G.; Ricci, A.; Bianconi, A. Local Structure in Mg1−xAlxB2 System by High Resolution Neutron Diffraction. J. Supercond. Nov. Magn. 2012, 25, 1319–1322. [Google Scholar] [CrossRef]
- Gauzzi, A.; Takashima, S.; Takeshita, N.; Terakura, C.; Takagi, H.; Emery, N.; Hérold, C.; Lagrange, P.; Loupias, G. Enhancement of superconductivity and evidence of structural instability in intercalated graphite CaC6 under high pressure. Phys. Rev. Lett. 2007, 98, 067002. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Daghero, D.; Delaude, D. Evidence for Gap Anisotropy in CaC6 from Directional Point-Contact Spectroscopy. Phys. Rev. Lett. 2008, 100, 207004. [Google Scholar] [CrossRef]
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Hinks, D.G.; Rosenmann, D.; Claus, H.; Bailey, M.S.; Jorgensen, J.D. Large Ca isotope effect in the CaC6 superconductor. Phys. Rev. B 2007, 75, 014509. [Google Scholar] [CrossRef]
- Jones, W.; March, N.H. Theoretical Solid State Physics; Courier Corporation: Chelmsford, MA, USA, 1985; Volume 35. [Google Scholar]
Pressure (GPa) | Cell Values [Å] | Tight-Binding Gap [meV] | Eav [meV] | Tc Exptl [K] | Calc’d Ratios | |||||
---|---|---|---|---|---|---|---|---|---|---|
a | c | @ Γ | @ Γ/n | z* Nested Fraction | SC TB Gap | SC TB Gap | Tc | |||
0 | 4.31 | 13.12 | 10.3 | 3.43 (n = 3) | 0.55 | 1.89 | −198.3 | 11.4 | 1.00 | 1.00 |
4 | 4.29 | 12.84 | 11.1 | 4.76 (n~7/3) | 0.49 | 2.31 | −67.1 | 13.6 | 1.22 | 1.19 |
7.5 | 4.28 | 12.63 | 11.8 | 5.9 (n = 2) | 0.43 | 2.54 | 22.8 | 15.1 | 1.34 | 1.32 |
12 | 4.26 | 12.41 | 12.8 | -- | -- | -- | 128.4 | 4.8 | - | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Bianconi, A.; Mackinnon, I.D.R.; Alarco, J.A. Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6. Crystals 2024, 14, 499. https://doi.org/10.3390/cryst14060499
Wang B, Bianconi A, Mackinnon IDR, Alarco JA. Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6. Crystals. 2024; 14(6):499. https://doi.org/10.3390/cryst14060499
Chicago/Turabian StyleWang, Bruce, Antonio Bianconi, Ian D. R. Mackinnon, and Jose A. Alarco. 2024. "Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6" Crystals 14, no. 6: 499. https://doi.org/10.3390/cryst14060499
APA StyleWang, B., Bianconi, A., Mackinnon, I. D. R., & Alarco, J. A. (2024). Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6. Crystals, 14(6), 499. https://doi.org/10.3390/cryst14060499