A Review of Cu3BiS3 Thin Films: A Sustainable and Cost-Effective Photovoltaic Material
Abstract
:1. Introduction
2. Structure and Properties of Cu3BiS3
3. Density Functional Theory Studies
4. CBS Film Synthesis Methods
4.1. One-Step Processing
4.1.1. Sputtering on Heated Substrate
4.1.2. Thermal Evaporation on Heated Substrates
4.1.3. Spin Coating
4.1.4. Chemical Bath Deposition
4.1.5. Spray Deposition
4.2. Two-Step Processing
4.2.1. Thermal Evaporation of Precursors and Post-Sulfurization
4.2.2. Sputtering Deposition of Precursors and Post-Sulfurization
4.2.3. Electrodeposition and Sulfurization
5. CBS PV Cell Modeling
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Li, Y.; Wu, Y.; Yang, G.; Mazzarella, L.; Procel-Moya, P.; Tamboli, A.C.; Weber, K.; Boccard, M.; Isabella, O.; et al. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater. Sci. Eng. R Rep. 2020, 142, 100579. [Google Scholar] [CrossRef]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Duan, L.; Zhao, Y.; Luo, J.; Zhang, X. Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications. Adv. Mater. 2020, 32, e1806474. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.W.; Ansari, M.Z.; Aamir, M.; Waheed-Ur-Rehman, M.; Parveen, N.; Ansari, S.A. Preparation and Characterization of Cu and Al Doped ZnO Thin Films for Solar Cell Applications. Crystals 2022, 12, 128. [Google Scholar] [CrossRef]
- Mesa, F.; Dussan, A.; Gordillo, G. Study of the growth process and optoelectrical properties of nanocrystalline Cu3BiS3 thin films. Phys. Status Solidi C 2010, 7, 917–920. [Google Scholar] [CrossRef]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Kumar, M.; Dubey, A.; Adhikari, N.; Venkatesan, S.; Qiao, Q. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 2015, 8, 3134–3159. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Powalla, M.; Paetel, S.; Ahlswede, E.; Wuerz, R.; Wessendorf, C.D.; Friedlmeier, T.M. Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Appl. Phys. Rev. 2018, 5, 041602. [Google Scholar] [CrossRef]
- Shah, U.A.; Wang, A.; Ullah, M.I.; Ishaq, M.; Alam Shah, I.; Zeng, Y.; Abbasi, M.S.; Umair, M.A.; Farooq, U.; Liang, G.; et al. A Deep Dive into Cu2ZnSnS4 (CZTS) Solar Cells: A Review of Exploring Roadblocks, Breakthroughs, and Shaping the Future. Small 2024, e2310584. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57. Prog. Photovolt. Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart. Acedido: 13 de maio de 2024. [Em linha]. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 15 May 2020).
- Konstantakou, M.; Perganti, D.; Falaras, P.; Stergiopoulos, T. Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells. Crystals 2017, 7, 291. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Prasad, A.R.; Khan, S.N.; Abdelkader, A.F.I.; Shahwan, M. Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software. Crystals 2021, 11, 1468. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4, 1301465. [Google Scholar] [CrossRef]
- Mineral Commodity Summaries 2023; U.S. Geological Survey, Summaries; 2023. Available online: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdf (accessed on 26 May 2024).
- Gerein, N.J.; Haber, J.A. One-Step Synthesis and Optical and Electrical Properties of Thin Film Cu3BiS3 for Use as a Solar Absorber in Photovoltaic Devices. Chem. Mater. 2006, 18, 6297–6302. [Google Scholar] [CrossRef]
- Deshmukh, S.G.; Kheraj, V. A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar photovoltaics. Nanotechnol. Environ. Eng. 2017, 2, 15. [Google Scholar] [CrossRef]
- Ojebuoboh, F.K. Bismuth—Production, properties, and applications. JOM 1992, 44, 46–49. [Google Scholar] [CrossRef]
- Wang, S.; Lu, P. (Eds.) Bismuth-Containing Alloys and Nanostructures; Springer Series in Materials Science; Springer: Singapore, 2019; Volume 285. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Yin, H.; Zhao, M.; Han, J. Study of copper bismuth sulfide thin films for the photovoltaic application. J. Mater. Sci. Mater. Electron. 2019, 30, 1832–1837. [Google Scholar] [CrossRef]
- Daniel, T.; Balasubramanian, V.; Nishanthi, S.T.; Amudhavalli, K.; Sivakumar, G.; Mohanraj, K. Photoelectrochemical and photovoltaic cell performances of thermally evaporated Cu3BiS3 thin films. Vacuum 2022, 195, 110707. [Google Scholar] [CrossRef]
- Kehoe, A.B.; Temple, D.J.; Watson, G.W.; Scanlon, D.O. Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: Insights from theory. Phys. Chem. Chem. Phys. 2013, 15, 15477–15484. [Google Scholar] [CrossRef]
- Yin, J.; Jia, J. Synthesis of Cu 3 BiS 3 nanosheet films on TiO2 nanorod arrays by a solvothermal route and their photoelectrochemical characteristics. CrystEngComm 2014, 16, 2795–2801. [Google Scholar] [CrossRef]
- Hernadez-Mota, J.; Espindola-Rodriguez, M.; Sanchez, Y.; Lopez, I.; Pena, Y.; Saucedo, E. Thin film photovoltaic devices prepared with Cu3BiS3 ternary compound. Mater. Sci. Semicond. Process. 2018, 87, 37–43. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, W.; Li, W.; Han, X. Effects of thiourea dosage on the structural, optical and electrical properties of one-step solution processed Cu3BiS3 film for photovoltaics. Appl. Phys. A 2021, 127, 1–6. [Google Scholar] [CrossRef]
- Capistrán-Martínez, J.; Loeza-Díaz, D.; Mora-Herrera, D.; Pérez-Rodríguez, F.; Pal, M. Theoretical evaluation of emerging Cd-free Cu3BiS3 based solar cells using experimental data of chemically deposited Cu3BiS3 thin films. J. Alloys Compd. 2021, 867, 159156. [Google Scholar] [CrossRef]
- Santos, D.R.; Shukla, S.; Vermang, B. Prospects of copper–bismuth chalcogenide absorbers for photovoltaics and photoelectrocatalysis. J. Mater. Chem. A 2023, 11, 22087–22104. [Google Scholar] [CrossRef]
- Chalapathi, U.; Mallikarjuna, K.; Kumar, K.C.; Gonuguntla, V.; El-Marghany, A.; Rosaiah, P.; Park, S.-H. Fabrication of phase-pure and large-grained Cu3BiS3 films by a two-stage process for thin film solar cells. Solid State Sci. 2024, 151, 107522. [Google Scholar] [CrossRef]
- Rath, T.; Marin-Beloqui, J.M.; Bai, X.; Knall, A.-C.; Sigl, M.; Warchomicka, F.G.; Griesser, T.; Amenitsch, H.; Haque, S.A. Solution-Processable Cu3BiS3 Thin Films: Growth Process Insights and Increased Charge Generation Properties by Interface Modification. ACS Appl. Mater. Interfaces 2023, 15, 41624–41633. [Google Scholar] [CrossRef] [PubMed]
- Kocman, V.; Nuffield, E.W. The crystal structure of wittichenite, Cu3BiS3. Acta Crystallogr. B 1973, 29, 2528–2535. [Google Scholar] [CrossRef]
- Evans, H.T. The crystal structures of low chalcocite and djurleite. Z. Für Krist. Cryst. Mater. 1979, 150, 299–320. [Google Scholar] [CrossRef]
- Colombara, D.; Peter, L.; Hutchings, K.; Rogers, K.; Schäfer, S.; Dufton, J.; Islam, M. Formation of Cu3BiS3 thin films via sulfurization of Bi–Cu metal precursors. Thin Solid Films 2012, 520, 5165–5171. [Google Scholar] [CrossRef]
- Lundegaard, L.F.; Makovicky, E.; Boffa-Ballaran, T.; Balic-Zunic, T. Crystal structure and cation lone electron pair activity of Bi2S3 between 0 and 10 GPa. Phys. Chem. Miner. 2005, 32, 578–584. [Google Scholar] [CrossRef]
- Moon, S.; Park, J.; Lee, H.; Yang, J.W.; Yun, J.; Park, Y.S.; Lee, J.; Im, H.; Jang, H.W.; Yang, W.; et al. Bi2S3-Cu3BiS3 Mixed Phase Interlayer for High-Performance Cu3BiS3-Photocathode for 2.33% Unassisted Solar Water Splitting Efficiency. Adv. Sci. 2023, 10, e2206286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Fang, Y.; Li, W.; Han, X. Impact of Ag doping on Cu3BiS3 solar cell performance. Sol. Energy 2021, 221, 109–113. [Google Scholar] [CrossRef]
- Hussain, A.; Luo, J.T.; Fan, P.; Liang, G.; Su, Z.; Ahmed, R.; Ali, N.; Wei, Q.; Muhammad, S.; Chaudhry, A.R.; et al. p-type Cu3BiS3 thin films for solar cell absorber layer via one stage thermal evaporation. Appl. Surf. Sci. 2020, 505, 144597. [Google Scholar] [CrossRef]
- Fazal, T.; Iqbal, S.; Shah, M.; Mahmood, Q.; Ismail, B.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.; Elkaeed, E.B. Optoelectronic, structural and morphological analysis of Cu3BiS3 sulfosalt thin films. Results Phys. 2022, 36, 105453. [Google Scholar] [CrossRef]
- Mahto, B.; Khan, A.A.; Barhoi, A.; Hussain, S. Hierarchical Cu3BiS3 Nanostructures with Thermally Controlled Morphology for Photoconductive, Photothermal, and Catalytic Applications. ACS Appl. Nano Mater. 2023, 6, 6784–6797. [Google Scholar] [CrossRef]
- Deshmukh, S.G.; Kheraj, V.; Karande, K.J.; Panchal, A.K.; Deshmukh, R.S. Deshmukh, Hierarchical flower-like Cu3BiS3 thin film synthesis with non-vacuum chemical bath deposition technique. Mater. Res. Express 2019, 6, 084013. [Google Scholar] [CrossRef]
- Whittles, T.J.; Veal, T.D.; Savory, C.N.; Yates, P.J.; Murgatroyd, P.A.E.; Gibbon, J.T.; Birkett, M.; Potter, R.J.; Major, J.D.; Durose, K.; et al. Band Alignments, Band Gap, Core Levels, and Valence Band States in Cu3BiS3 for Photovoltaics. ACS Appl. Mater. Interfaces 2019, 11, 27033–27047. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, W.; Hu, Y.; Xiao, G.; Ni, H.; Ikeda, S.; Ng, Y.; Jiang, F. Research on the Influence of the Interfacial Properties Between a Cu3BiS3 Film and an InxCd1−xS Buffer Layer for Photoelectrochemical Water Splitting. Adv. Sci. 2022, 9, e2204029. [Google Scholar] [CrossRef]
- Oubakalla, M.; Bouachri, M.; Beraich, M.; Taibi, M.; Guenbour, A.; Bellaouchou, A.; Bentiss, F.; Zarrouk, A.; Fahoume, M. Potential Effect on the Properties of Cu3BiS3 Thin Film Co-electrodeposited in Aqueous Solution Enriched Using DFT Calculation. J. Electron. Mater. 2022, 51, 7223–7233. [Google Scholar] [CrossRef]
- Raju, N.P.; Tripathi, D.; Lahiri, S.; Thangavel, R. Heat reflux sonochemical synthesis of Cu3BiS3 quantum dots: Experimental and first-principles investigation of spin–orbit coupling on structural, electronic, and optical properties. Sol. Energy 2023, 259, 107–118. [Google Scholar] [CrossRef]
- Morales-Gallardo, M.; Pascoe-Sussoni, J.E.; Delesma, C.; Mathew, X.; Paraguay-Delgado, F.; Muñiz, J.; Mathews, N. Surfactant free solvothermal synthesis of Cu3BiS3 nanoparticles and the study of band alignments with n-type window layers for applications in solar cells: Experimental and theoretical approach. J. Alloys Compd. 2021, 866, 158447. [Google Scholar] [CrossRef]
- Jia, F.; Zhao, S.; Wu, J.; Chen, L.; Liu, T.; Wu, L. Cu3BiS3: Two-Dimensional Coordination Induces Out-of-Plane Phonon Scattering Enabling Ultralow Thermal Conductivity. Angew. Chem. 2023, 135, e202315642. [Google Scholar] [CrossRef]
- Chalapathi, U.; Prasad, P.R.; Sambasivam, S.; Mallikharjuna, K.; Rosaiah, P.; Alhammadi, S.; Tighezza, A.M.; Mohanarangam, K.; Park, S.-H. Two-stage growth of Cu3BiS3 thin films: Influence of the Cu/Bi ratio. J. Mater. Res. Technol. 2023, 26, 2443–2450. [Google Scholar] [CrossRef]
- Li, J.; Jiang, L.; Wang, B.; Liu, F.; Yang, J.; Tang, D.; Lai, Y.; Li, J. Electrodeposition and characterization of copper bismuth selenide semiconductor thin films. Electrochim. Acta 2013, 87, 153–157. [Google Scholar] [CrossRef]
- Ali, N.; Hussain, A.; Ahmed, R.; Wang, M.K.; Zhao, C.; Haq, B.U.; Fu, Y.Q. Advances in nanostructured thin film materials for solar cell applications. Renew. Sustain. Energy Rev. 2016, 59, 726–737. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Birnie, D.P. Solvothermal Synthesis of Cu3BiS3 Enabled by Precursor Complexing. ACS Sustain. Chem. Eng. 2013, 1, 306–308. [Google Scholar] [CrossRef]
- Li, J.; Han, X.; Zhao, Y.; Li, J.; Wang, M.; Dong, C. One–step synthesis of Cu3BiS3 thin films by a dimethyl sulfoxide (DMSO)–based solution coating process for solar cell application. Sol. Energy Mater. Sol. Cells 2018, 174, 593–598. [Google Scholar] [CrossRef]
- Ezekoye, B.A.; Offor, P.O.; Ezekoye, V.A.; Ezema, F.I. Chemical Bath Deposition Technique of Thin Films: A Review. Int. J. Sci. Res. 2012, 2, 452–456. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Zuhdi, A.W.M.; Abdullah, S.F.; Chau, C.F.; Ghazali, A.; Ahmad, I.; Abdullah, W.S.W. Effect of Chemical Bath Deposition Variables on the Properties of Zinc Sulfide Thin Films: A Review. Molecules 2023, 28, 2780. [Google Scholar] [CrossRef]
- Vipul, K. Chemical bath deposition of Cu3BiS3 thin films. AIP Conf. Proc. 2016, 1728, 020023. [Google Scholar] [CrossRef]
- Deshmukh, S.G.; Panchal, A.K.; Kheraj, V. Development of Cu3BiS3 thin films by chemical bath deposition route. J. Mater. Sci. Mater. Electron. 2017, 28, 11926–11933. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Nie, L.; Chen, L.; Yuan, R. Spray pyrolysis deposition of Cu3BiS3 thin films. Thin Solid Films 2015, 585, 72–75. [Google Scholar] [CrossRef]
- Nanu, M.; Schoonman, J.; Goossens, A. Nanocomposite Three-Dimensional Solar Cells Obtained by Chemical Spray Deposition. Nano Lett. 2005, 5, 1716–1719. [Google Scholar] [CrossRef] [PubMed]
- Faber, H.; Butz, B.; Dieker, C.; Spiecker, E.; Halik, M. Fully Patterned Low-Voltage Transparent Metal Oxide Transistors Deposited Solely by Chemical Spray Pyrolysis. Adv. Funct. Mater. 2013, 23, 2828–2834. [Google Scholar] [CrossRef]
- Chalapathi, U.; Prasad, P.R.; Reddy, C.P.; Sambasivam, S.; Rosaiah, P.; Ouladsmane, M.; Alhammadi, S.; Lee, S.; Park, S. Synthesis of wittichenite Cu3BiS3 thin films by sulfurizing thermally evaporated Cu-Bi metallic stacks. Chalcogenide Lett. 2023, 1584–8663, 797–802. [Google Scholar] [CrossRef]
- Gerein, N.J.; Haber, J.A. Physical Vapor Deposition Synthesis of Cu3BiS3 for Application in Thin Film Photovoltaics. MRS Proc. 2005, 865, 52. [Google Scholar] [CrossRef]
- Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Kötschau, I.; Schock, H.-W.; Schurr, R.; Hölzing, A.; Jost, S.; Hock, R.; et al. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films 2009, 517, 2511–2514. [Google Scholar] [CrossRef]
- Mesa, F.; Ballesteros, V.; Dussan, A. Growth Analysis and Numerical Simulation of Cu_3BiS_3 Absorbing Layer Solar Cell through the wxAMPS and Finite Element Method. Acta Phys. Pol. A 2014, 125, 385–387. [Google Scholar] [CrossRef]
Mineral | Wittichenite |
---|---|
Crystal System | Orthorhombic |
Space Group | P212121 |
Lattice at 300 K [31] | a = 7.723 Å b = 10.395 Å c = 6.716 Å |
Volume [31] | 539.164 Å3 |
Density [31] | 6.11 g.cm−3 |
Magnetic properties | Diamagnetic |
Reported Eg | 1.0–1.7 eV |
Oxidation states | Cu+, Bi3+, S2− |
Synthesis Method | Methodology Summary | T (°C) | Eg (eV) | Observations | Refs. | |
---|---|---|---|---|---|---|
One-step processing | Sputtering on Heated Substrate | Sputtering in Ar atmosphere, requires heated substrate | 250–300 | 1.4 | Homogeneous at 300 °C, layered structure at 250 °C | [17] |
Thermal Evaporation on Heated Substrate | Co-evaporation of precursors on heated substrate | 250–400 | 1.4 | CBS phase at 350–400 °C, compact columnar structure | [37,48,49,50] | |
Spin Coating | Precursor solution spin-coated, followed by drying | 240–340 | 1.47 | Good crystallinity, pores and cracks mitigated with temperature | [51] | |
Chemical Bath Deposition | Low-cost aqueous solution deposition | 55–70 (328 K) | 1.42–1.56 | Spherical nanoparticles of 70–80 nm | [54,55] | |
Spray Pyrolysis | Solution sprayed and decomposed on hot substrate | 250–400 | 1.65–1.72 | Presence of secondary phases, non-uniform | [56,57,58] | |
Two-step processing | Thermal Evaporation + Sulfurization | Metal evaporation followed by sulfurization | 350–450 | 1.3–1.4 | Crystalline, grain size increases with temperature | [29,41,47,59] |
Sputtering + Sulfurization | Metal sputtering followed by sulfurization | 250–400 | N.A. | Distinct phases, CBS favored at 270 °C | [60] | |
Electrodeposition + Sulfurization | Electrochemical metal deposition followed by sulfurization | 270–550 | N.A. | Compact and homogeneous at 500 °C | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libório, M.S.; Queiroz, J.C.A.d.; Sivasankar, S.M.; Costa, T.H.d.C.; Cunha, A.F.d.; Amorim, C.d.O. A Review of Cu3BiS3 Thin Films: A Sustainable and Cost-Effective Photovoltaic Material. Crystals 2024, 14, 524. https://doi.org/10.3390/cryst14060524
Libório MS, Queiroz JCAd, Sivasankar SM, Costa THdC, Cunha AFd, Amorim CdO. A Review of Cu3BiS3 Thin Films: A Sustainable and Cost-Effective Photovoltaic Material. Crystals. 2024; 14(6):524. https://doi.org/10.3390/cryst14060524
Chicago/Turabian StyleLibório, Maxwell Santana, José César Augusto de Queiroz, Sivabalan Maniam Sivasankar, Thercio Henrique de Carvalho Costa, António Ferreira da Cunha, and Carlos de Oliveira Amorim. 2024. "A Review of Cu3BiS3 Thin Films: A Sustainable and Cost-Effective Photovoltaic Material" Crystals 14, no. 6: 524. https://doi.org/10.3390/cryst14060524
APA StyleLibório, M. S., Queiroz, J. C. A. d., Sivasankar, S. M., Costa, T. H. d. C., Cunha, A. F. d., & Amorim, C. d. O. (2024). A Review of Cu3BiS3 Thin Films: A Sustainable and Cost-Effective Photovoltaic Material. Crystals, 14(6), 524. https://doi.org/10.3390/cryst14060524