Chloride-Induced Stress Corrosion Cracking of Friction Stir-Welded 304L Stainless Steel: Effect of Microstructure and Temperature
Abstract
:1. Introduction
2. Experimental
2.1. Friction Stir Welding (FSW) Process
2.2. Microstructural Characterization
2.3. Electrochemical Studies
2.4. Stress Corrosion Cracking (SCC)
3. Results & Discussion
3.1. Microstructure
3.2. Corrosion Characterization at Open Circuit Potential (OCP)
3.2.1. Open Circuit Potential (OCP) and Polarization Resistance (Rp)
3.2.2. Electrochemical Impedance Spectroscopy (EIS) at OCP
3.2.3. Potentiodynamic Polarization Scan (PDP)
3.2.4. Surface Morphology after Potentiodynamic Polarization
3.3. Stress Corrosion Cracking (SCC) in Acidified Chloride Solution
3.3.1. OCP and Failure Time
3.3.2. Metallographic Study
3.3.3. Fractography
3.4. Stress Corrosion Cracking (SCC) in Boiling MgCl2 Solution
4. Discussion
4.1. Role of Microstructures
4.2. SCC Initiation
- Formation and growth of planar passive film.
- Development of passive film growth stresses as a function of time (dσ/dt) superimposed on applied stress and reaching a threshold value.
- The growth stress includes electrostriction stresses due to changes in the dielectric constant, which is time-dependent on the migration of ionic defects.
- Surface diffusion of chloride or hydroxyl ions and adsorption at critical sites result in reduced surface energy and undulation of the oxide/electrolyte interface.
- Aging of the passive film: activities include the annihilation of point defects, nucleation of the short-range ordering of nanocrystals from the amorphous structure, and formation of the continuous pathway of the interface between amorphous and nanocrystals in the passive film across its thickness.
- Migration of chloride ions along the interface between the nanocrystal and amorphous. When there is a continuous path, the chloride ions reach the metal/oxide interface and undulate it. If the interface pathway is not continuous, the chloride ions will not reach the metal/oxide interface, and there will not be any undulation. Therefore, pit initiation or crack initiation sites depend on the continuous pathway for chloride ion migration.
- The alternate mechanism of pit initiation cold be based on the point defect model proposed by Macdonald [69]. According to this model, cation vacancies are created at the oxide/electrolyte interface by the reaction:MM(Ox) → M3+ (aq) + VM3−
- The cation vacancies migrate to the metal/oxide interface due to the potential gradient across the passive film and consumed by the film formation reaction:Metal + VM3− → MM(Ox) + 3e−
- Adsorption of chloride ions on the oxide surface leads to interaction with oxygen vacancies, which in turn releases more cation vacancies by autocatalytic reactions:Null → x/2 VO2+ + VMx− → (x/2 VO2+ + VMx−) + Cl− → ClO+ + VMx−
- When the concentration of cation vacancies reaching the metal/oxide interface is higher than the concentration of cation vacancies consumed by reaction (3), the surplus vacancies condense and form voids at the metal/oxide interface. The voids detach the oxide layer from the metal substrate, and the growth is arrested at that location. However, the dissolution reaction (2) continues which ultimately results in pit initiation at that location.
4.3. SCC Propagation
5. Conclusions
- The FSW of 304 SS resulted in finer grains (12–20 μm), a higher fraction of low-angle grain boundaries (67%), and a breakdown of delta ferrite stringers to small particles, whereas the BM showed longer delta ferrite stringers, larger grains (32–60 μm), and a lower fraction of low-angle grain boundaries (2.2%).
- The stir zone of the FSW specimen showed a hardness value of 225 HV, while the hardness of BM was ~170 HV.
- The electrochemical polarization behaviors of the FSW and BM in the 5 N H2SO4 + 3.5% NaCl at room temperature (24 °C) were almost similar.
- The FSW U-bend specimens were subjected to 60% more outer fiber stress than the BM specimens.
- FSW and BM U-bend specimens failed due to stress corrosion cracking in the acid-chloride solution (room temperature) and the boiling MgCl2 solution.
- The FSW and BM specimens failed within 24 h in the boiling MgCl2 solution. On the other hand, a five-fold increase in the failure time was observed in the acidified chloride solution at room temperature.
- No cracking was observed in the stirred zone of the FSW specimens in the acidified chloride solution at room temperature, which was attributed to the benefits of optimal grain size and grain boundary characteristics.
- Fractography shows mostly transgranular modes of failure for both BM and FSW when tested at room temperature, while mixed-mode cracking was observed in the boiling MgCl2 solution. The presence of delta ferrite negatively affected the SCC resistance in both the acid-chloride and boiling MgCl2 solutions.
- Hydrogen-assisted SCC could be the failure mechanism in the boiling MgCl2 solution, while predominantly passive film rupture and slip-step dissolution occurred in the acidified chloride solution at room temperature.
- The FSW specimens showed higher tolerance to SCC than the base metal.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asawa, M. Stress corrosion cracking of type 304 stainless steel in sulfuric acid solutions containing cyanide or thiocyanate. Trans. Jpn. Inst. Met. 1988, 29, 650–657. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Chen, C.; Yu, H. Temperature change induce crack mode transition of 316L stainless steel in H2S environment revealed by dislocation configurations. Corros. Sci. 2021, 193, 109896. [Google Scholar] [CrossRef]
- Cheng, Y.F. Stress Corrosion Cracking of Pipelines; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Huang, Y.; Xuan, F.Z.; Tu, S.T.; Itoh, T. Effects of hydrogen and surface dislocation on active dissolution of deformed 304 austenitic stainless steel in acid chloride solution. Mater. Sci. Eng. A 2011, 528, 1882–1888. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review. J. Nucl. Mater. 2015, 466, 85–93. [Google Scholar] [CrossRef]
- Mayuzumi, M.; Tani, J.; Arai, T. Chloride induced stress corrosion cracking of candidate canister materials for dry storage of spent fuel. Nucl. Eng. Des. 2008, 238, 1227–1232. [Google Scholar] [CrossRef]
- Bryan, C.R.; Knight, A.W.; Katona, R.M.; Sanchez, A.; Schindelholz, E.J.; Schaller, R.F. Physical and chemical properties of sea salt deliquescent brines as a function of temperature and relative humidity. Sci. Total Environ. 2022, 824, 154462. [Google Scholar] [CrossRef] [PubMed]
- Cragnolino, G.; Macdonald, D.D. Intergranular stress corrosion cracking of austenitic stainless steel at temperatures below 100C—A review. Corrosion 1982, 38, 406–424. [Google Scholar] [CrossRef]
- Srinivasan, J.; Weirich, T.D.; Marino, G.A.; Annerino, A.R.; Taylor, J.M.; PNoell, J.J.; Griego, M.; Schaller, R.F.; Bryan, C.R.; Locke, J.S.; et al. Long-term effects of humidity on stainless steel pitting in sea salt exposures. J. Electrochem. Soc. 2021, 168, 021501. [Google Scholar] [CrossRef]
- Lu, B.T.; Chen, Z.K.; Luo, J.L.; Patchett, B.M.; Xu, Z.H. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim. Acta 2005, 50, 1391–1403. [Google Scholar] [CrossRef]
- Acello, S.J.; Greene, N.D. Anodic protection of austenitic stainless steels in sulfuric acid-chloride media. Corrosion 1962, 18, 286t–290t. [Google Scholar] [CrossRef]
- McCollough, I.S.; Scully, J.C. The effects of polarization on the failure in acids of cold-worked 18Cr10Ni steels. Corros. Sci. 1969, 9, 651–665. [Google Scholar] [CrossRef]
- Asawa, M. Stress corrosion cracking of 18-8 austenitic stainless steel in sulfuric acid. Tetsu-to-Hagane 1971, 57, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Sunada, S.; Kariba, M.; Majima, K.; Sugimoto, K. Influences of concentrations of H2SO4 and NaCl on stress corrosion cracking of SUS304 Stainless Steel in H2SO4–NaCl Aqueous Solutions. Mater. Trans. 2006, 47, 364–370. [Google Scholar] [CrossRef]
- Wang, W.W.; Su, Y.J.; Yan, Y.; Li, J.X.; Qiao, L.J.; Chu, W.Y.; Wang, X.K.; Xing, Y. The role of hydrogen in stress corrosion cracking of 310 austenitic stainless steel in a boiling MgCl2 solution. Corros. Sci. 2012, 60, 275–279. [Google Scholar] [CrossRef]
- Pal, S.; Bhadauria, S.S.; Kumar, P. Studies on stress corrosion cracking of F304 stainless steel in boiling magnesium chloride solution. J. Bio-Tribo-Corros. 2021, 7, 62. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Fang, K.; Xue, F.; Zhang, G.; Luo, K.; Wang, L. Effect of machining on the stress corrosion cracking behavior in boiling magnesium chloride solution of austenitic stainless steel. Mater. Corros. 2018, 69, 519–526. [Google Scholar] [CrossRef]
- Rebak, R.B. Resistance of ferritic steels to stress corrosion cracking in high temperature water. In Proceedings of the ASME 2013 Pressure Vessels and Piping Conference PVP2013, Paris, France, 14–18 July 2013; Paper # PVP2013-97352. ASME: New York, NY, USA, 2013. [Google Scholar]
- Smith, T.J.; Staehle, R.W. Role of slip step emergence in the early stages of stress corrosion cracking in face centered Iron–Nickel–Chromium alloys. Corrosion 1967, 23, 117–129. [Google Scholar] [CrossRef]
- Nakano, J.; Nemoto, Y.; Tsukada, T.; Uchimoto, T. SCC susceptibility of cold-worked stainless steel with minor element additions. J. Nucl. Mater. 2011, 417, 883–886. [Google Scholar] [CrossRef]
- Wei, X.; Ling, X.; Zhang, M. Influence of surface modifications by laser shock processing on the acid chloride stress corrosion cracking susceptibility of AISI 304 stainless steel. Eng. Fail. Anal. 2018, 91, 165–171. [Google Scholar] [CrossRef]
- Feng, Q.; She, J.; Wu, X.; Wang, C.; Jiang, C. The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel. J. Mater. Eng. Perform. 2018, 27, 1396–1403. [Google Scholar] [CrossRef]
- Ma, G.; Ling, X. Effect of temperature and chloride content on the stress corrosion cracking susceptibility of 304 stainless steel welded joints treated by ultrasonic impact treatment. J. Press. Vessel. Technol. 2013, 135, 051501. [Google Scholar] [CrossRef]
- Yoo, Y.-R.; Choi, S.-H.; Kim, Y.-S. Effect of laser shock peening on the stress corrosion cracking of 304L stainless steel. Metals 2023, 13, 516. [Google Scholar] [CrossRef]
- Qu, H.J.; Srinivasan, J.; Zhao, Y.; Mao, K.S.; Taylor, J.M.; Marino, G.; Montoya, T.; Johnson, K.; Locke, J.S.; Schaller, R.; et al. Stress corrosion cracking mechanism of cold spray coating on a galvanically similar substrate. Mater. Sci. Eng. A 2022, 849, 143404. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Gnaupel-Herold, T.; Raja, K.S.; Darsell, J.; Jana, S.; Charit, I. Evaluation of residual stresses in isothermal friction stir welded 304L stainless steel plates. Mater. Sci. Eng. A 2021, 826, 141982. [Google Scholar] [CrossRef]
- Naskar, A.; Bhattacharyya, M.; Raja, K.S.; Charit, I.; Darsell, J.; Jana, S. Pitting behavior of friction stir repair welded 304L stainless steel in 3.5% NaCl solution at room temperature: Role of grain and defect structures. SN Appl. Sci. 2020, 2, 2164. [Google Scholar] [CrossRef]
- Naskar, A.; Bhattacharyya, M.; Raja, K.S.; Charit, I.; Darsell, J.; Jana, S. Corrosion behavior of plastically deformed AISI 304 stainless steel by friction stir welding: Comparison of Crack Repaired and Autogenously Welded Materials. Corros. Eng. Sci. Technol. 2022, 57, 599–612. [Google Scholar] [CrossRef]
- Raja, K.S.; Rao, K.P. Effect of applied potentials on room temperature stress corrosion cracking of austenitic stainless steel weldments. Corrosion 1992, 48, 634–640. [Google Scholar] [CrossRef]
- ASTM G30-97 (Reapproved 2003); Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2003.
- Bhattacharyya, M.; Kundu, A.; Raja, K.S.; Darsell, J.; Jana, S.; Charit, I. Processing-microstructure-property correlations for temperature-controlled friction stir welding of 304L SS plates. Mater. Sci. Eng. A 2021, 804, 140635. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Charit, I.; Raja, K.S.; Darsell, J.; Jana, S. A feasibility study on crack repair in austenitic stainless steel dry storage canisters using isothermal friction stir welding. In Proceedings of the Pressure Vessels and Piping Conference, Virtual, 3 August 2020; Volume 83815, p. V001T01A099. [Google Scholar]
- Reynolds, A.P.; Tang, W.; Gnaupel-Herold, T.; Prask, H. Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scr. Mater. 2003, 48, 1289–1294. [Google Scholar] [CrossRef]
- Sato, Y.S.; Nelson, T.W.; Sterling, C.J. Recrystallization in type 304L stainless steel during friction stirring. Acta Mater. 2005, 53, 637–645. [Google Scholar] [CrossRef]
- Siddiquee, A.N.; Pandey, S.; Abidi, M.H.; Al-Ahmari, A.; Khan, N.Z.; Gangil, N. Microstructural characterization and in-process traverse force during friction stir welding of austenitic stainless steel. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 1031–1043. [Google Scholar] [CrossRef]
- Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W. Recrystallisation mechanism during friction stir welding of ultrafine-and coarse-grained AISI 304L stainless steel. Sci. Technol. Weld. Join. 2016, 21, 287–294. [Google Scholar] [CrossRef]
- Park, S.H.C.; Sato, Y.S.; Kokawa, H.; Okamoto, K.; Hirano, S.; Inagaki, M. Rapid formation of the sigma phase in 304 stainless steel during friction stir welding. Scr. Mater. 2003, 49, 1175–1180. [Google Scholar] [CrossRef]
- Park, S.H.C.; Sato, Y.S.; Kokawa, H.; Okamoto, K.; Hirano, S.; Inagaki, M. Corrosion resistance of friction stir welded 304 stainless steel. Scr. Mater. 2004, 51, 101–105. [Google Scholar] [CrossRef]
- Chen, Y.C.; Fujii, H.; Tsumura, T.; Kitagawa, Y.; Nakata, K.; Ikeuchi, K.; Matsubayashi, K.; Michishita, Y.; Fujiya, Y.; Katoh, J. Friction stir processing of 316L stainless steel plate. Sci. Technol. Weld. Join. 2009, 14, 197–201. [Google Scholar] [CrossRef]
- Hajian, M.; Abdollah-Zadeh, A.; Rezaei-Nejad, S.S.; Assadi, H.; Hadavi SM, M.; Chung, K.; Shokouhimehr, M. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel. Mater. Des. 2015, 67, 82–94. [Google Scholar] [CrossRef]
- Tcharkhtchi-Gillard, E.; Benoit, M.; Clavier, P.; Gwinner, B.; Miserque, F.; Vivier, V. Kinetics of the oxidation of stainless steel in hot and concentrated nitric acid in the passive and transpassive domains. Corros. Sci. 2016, 107, 182–192. [Google Scholar] [CrossRef]
- Luo, H.; Su, H.; Ying, G.; Dong, C.; Li, X. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment. Appl. Surf. Sci. 2017, 425, 628–638. [Google Scholar] [CrossRef]
- Sinjlawi, A.; Chen, J.; Kim, H.S.; Lee, H.B.; Jang, C.; Lee, S. Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen. Nucl. Eng. Technol. 2020, 52, 2552–2564. [Google Scholar] [CrossRef]
- Di Schino, A.; Kenny, J.M. Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. J. Mater. Sci. Lett. 2002, 21, 1631–1634. [Google Scholar] [CrossRef]
- Aghuy, A.A.; Zakeri, M.; Moayed, M.H.; Mazinani, M. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corros. Sci. 2015, 94, 368–376. [Google Scholar] [CrossRef]
- Meran, C.E.M.A.L.; Canyurt, O.E. Friction Stir Welding of austenitic stainless steels. Parameters 2010, 6, 13. [Google Scholar]
- Sulaiman, S.; Emamian, S.; Sheikholeslam, M.N.; Mehrpouya, M. Review of the effects of friction stir welding speed on stainless steel type 304L. Int. J. Mater. Mech. Manuf. 2013, 1, 85–87. [Google Scholar] [CrossRef]
- Sorensen, C.D.; Nelson, T.W. Sigma phase formation in friction stirring of iron-nickel-chromium alloys. In Proceedings of the Seventh International Conference on Trends in Welding Research, Pine Mountain, GA, USA, 16–20 May 2005. [Google Scholar]
- Qi, J.; Huang, B.; Wang, Z.; Ding, H.; Xi, J.; Fu, W. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel. J. Mater. Sci. Technol. 2017, 33, 1621–1628. [Google Scholar] [CrossRef]
- Leontidis, E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci. 2002, 7, 81–91. [Google Scholar] [CrossRef]
- Trompette, J.L. Implications of the kosmotrope/chaotrope nature of the anions on the breakdown of passivity of iron by halides. Corros. Sci. 2014, 82, 108–114. [Google Scholar] [CrossRef]
- Shrestha, N.; Utgikar, V.; Raja, K.S. Mg-RE Alloy Anode Materials for Mg-Air Battery Application. Journal of The Electrochemical Society 2019, 166, A3139–A3153. [Google Scholar] [CrossRef]
- Loto, R.T. Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. J. Mater. Environ. Sci. 2013, 4, 448–459. [Google Scholar]
- Okada, H.; Hosoi, Y.; Abe, S. Scanning electron microscopic observation of fracture surface of austenitic stainless steels in stress corrosion cracking. Corrosion 1971, 27, 424–428. [Google Scholar] [CrossRef]
- Stalder, F.; Duquette, D.J. Slow strain rate stress corrosion cracking of type 304 stainless steels. Corrosion 1977, 33, 67–72. [Google Scholar] [CrossRef]
- Nakayama, T.; Takano, M. Application of a slip dissolution-repassivation model for stress corrosion cracking of AISI 304 stainless steel in a boiling 42% MgCl2 solution. Corrosion 1986, 42, 10–15. [Google Scholar] [CrossRef]
- Manfredi, C.; Maier, J.A.; Galvele, J.R. The susceptibility of type AISI 304 stainless steel to transgranular and intergranular scc in 40% MgCl2 solution at 100 °C. Corros. Sci. 1987, 27, 887–903. [Google Scholar] [CrossRef]
- Barnartt, S.; van Rooyen, D. Anodic behavior of austenitic stainless steels and susceptibility to stress corrosion cracking. J. Electrochem. Soc. 1961, 108, 222–229. [Google Scholar] [CrossRef]
- Hua, Z.; Zhu, S.; Zhang, Y.; Liu, Z.; Cui, T. A method to calculate hydrogen trap binding energy in austenitic stainless steel using local equilibrium model. Inter. J. Hydrogen Energy 2018, 43, 22676–22684. [Google Scholar] [CrossRef]
- Asaro, R.J.; Tiller, W.A. Interface morphology development during stress corrosion cracking: Part I. via surface diffusion. Metall. Trans. 1972, 3, 1789–1796. [Google Scholar] [CrossRef]
- Ramanathan, R.; Voorhees, P.W. Morphological stability of steady-state passive oxide films. Electrochimica Acta 2019, 303, 299–315. [Google Scholar] [CrossRef]
- Stanton, L.G.; Golovin, A.A. Effect of electrostriction on the self-organization of porous nanostructures in anodized aluminum oxide. Math. Model. Nat. Phenom. 2008, 3, 73–91. [Google Scholar] [CrossRef]
- Singh, G.K.; Golovin, A.A.; Aranson, I.S. Formation of self-organized nanoscale porous structures in anodic aluminum oxide. Phys. Rev. B 2006, 73, 205422. [Google Scholar] [CrossRef]
- Marks, L. Competitive chloride chemisorption disrupts hydrogen bonding networks: DFT, crystallography, thermodynamics, and morphological consequences. Corrosion 2018, 74, 295–311. [Google Scholar] [CrossRef]
- Sato, N.A. Theory for breakdown of anodic oxide films on metals. Electrochim. Acta 1971, 16, 1683–1692. [Google Scholar] [CrossRef]
- Wagner, C. Oxidation of alloys involving noble metals. J. Electrochem. Soc. 1956, 103, 571–580. [Google Scholar] [CrossRef]
- Yu, X.-X.; Gulec, A.; Cwalina, K.L.; Scully, J.R.; Marks, L.D. New insights on the role of chloride during the onset of local corrosion: TEM, APT, surface energy, and morphological instability. Corrosion 2019, 75, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, J.; Wu, B.; Guo, X.W.; Wang, Y.J.; Chen, D.; Zhang, Y.C.; Du, K.; Oguzie, E.E.; Ma, X.L. Unmasking chloride attack on the passive film of metals. Nat. Commun. 2018, 9, 2559. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, D.D. The Point Defect Model for the Passive State. J. Electrochem. Soc. 1992, 139, 3434–3449. [Google Scholar] [CrossRef]
- Çapraz, Ö.Ö.; Shrotriya, P.; Skeldon, P.; Thompson, G.E.; Hebert, K.R. Factors controlling stress generation during the initial growth of porous anodic aluminum oxide. Electrochim. Acta 2015, 159, 16–22. [Google Scholar] [CrossRef]
- Staehle, R.W. Transient stability of passive films in aqueous solutions. Corros. Sci. 2007, 49, 7–19. [Google Scholar] [CrossRef]
- Cottrell, A.H. Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME 1958, 212, 192–203. [Google Scholar]
Isothermal Tool Temperature (°C) | Welding Speed (mm/min) | Tool Rotational Speed (rev/min) | Vertical Forging Load (kN) | Spindle Torque (N.m) | Weld Power (kW) |
---|---|---|---|---|---|
900 | 50.8 | 160–200 | 55.6 | ~150 | ~2.7 |
Sample | Grain Size, µm | LABs, % | Ʃ3, % |
---|---|---|---|
Base material (BM) | 44 16 | 2.20 | 47.70 |
FSW (bead-on-plate) | 16 4 | .85 | 4.34 |
Sample | OCP, VAg|AgCl | RP, ohm | βanodic V/dec. | βcathodic V/dec. | icorr, µA/cm2 | ipass, µA/cm2 | icrit, mA/cm2 | Epit VAg/AgCl |
---|---|---|---|---|---|---|---|---|
Base material (BM) | 0.345 0.05 | 575 | 104 | 90 | 103.38 | 260.38 | 50.36 | 1.071 |
FSW (bead-on-plate) | 0.320 0.03 | 110 | 60.35 | 270.30 | 115.2 | 1.092 |
Specimen ID | Rsol (ohm) | Q1/10−6 (S.sa) | a | R1 (ohm) | Q2/10−6 (S.sb) | RF (ohm) | b |
---|---|---|---|---|---|---|---|
Base metal | 0.8763 | 0.9035 |
Specimen ID | Rsol (ohm) | Q1/10−6 (S.sa) | a | R1 (ohm) | RF (ohm) | L (H) |
---|---|---|---|---|---|---|
FSW (bead-on-plate) | 0.8408 |
U-Bend Sample | Time to Failure, Hours | Initial OCP, VAg/AgCl | Final OCP, VAg/AgCl |
---|---|---|---|
Base material (BM) | 144 ± 8 | −0.341 | −0.264 |
FSW (bead-on-plate) | 132 ± 6 | −0.294 | −0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naskar, A.; Bhattacharyya, M.; Jana, S.; Darsell, J.; Raja, K.S.; Charit, I. Chloride-Induced Stress Corrosion Cracking of Friction Stir-Welded 304L Stainless Steel: Effect of Microstructure and Temperature. Crystals 2024, 14, 556. https://doi.org/10.3390/cryst14060556
Naskar A, Bhattacharyya M, Jana S, Darsell J, Raja KS, Charit I. Chloride-Induced Stress Corrosion Cracking of Friction Stir-Welded 304L Stainless Steel: Effect of Microstructure and Temperature. Crystals. 2024; 14(6):556. https://doi.org/10.3390/cryst14060556
Chicago/Turabian StyleNaskar, Anirban, Madhumanti Bhattacharyya, Saumyadeep Jana, Jens Darsell, Krishnan S. Raja, and Indrajit Charit. 2024. "Chloride-Induced Stress Corrosion Cracking of Friction Stir-Welded 304L Stainless Steel: Effect of Microstructure and Temperature" Crystals 14, no. 6: 556. https://doi.org/10.3390/cryst14060556
APA StyleNaskar, A., Bhattacharyya, M., Jana, S., Darsell, J., Raja, K. S., & Charit, I. (2024). Chloride-Induced Stress Corrosion Cracking of Friction Stir-Welded 304L Stainless Steel: Effect of Microstructure and Temperature. Crystals, 14(6), 556. https://doi.org/10.3390/cryst14060556