Tuning Fe2Ti Distribution to Enhance Extrinsic Magnetic Properties of SmFe12-Based Magnets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis and Magnetic Properties
3.2. Microstructure
3.3. First-Principles Calculations
3.4. Magnetic Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathak, A.K.; Khan, M.; Gschneidner, K.A., Jr.; Mccallum, R.W.; Zhou, L.; Sun, K.; Dennis, K.W.; Zhou, C.; Pinkerton, F.E.; Kramer, M.J. Cerium: An unlikely replacement of dysprosium in high performance NdFeB permanent magnets. Adv. Mater. 2015, 27, 2663–2667. [Google Scholar] [CrossRef] [PubMed]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lou, L.; Song, W.; Huang, G.; Hou, F.; Zhang, Q.; Zhang, H.T.; Xiao, J.; Wen, B.; Zhang, X. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv. Mater. 2017, 29, 1606430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; He, J.; Li, W.; Liu, X.; Zhang, J.; Wen, L.; Zhang, Z.; Hu, J.; Zhang, J.; Liao, X. Understanding the role of element grain boundary diffusion mechanism in Nd–Fe–B magnets. Adv. Funct. Mater. 2022, 32, 2109529. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Tamazawa, Y.; Kambayashi, M.; Saito, G.; Takahashi, Y.K.; Ogawa, D.; Ohkubo, T.; Hirosawa, S.; Doi, M.; Shima, T. Achievement of high coercivity in Sm (Fe0.8Co0.2)12 anisotropic magnetic thin film by boron doping. Acta Mater. 2020, 194, 337–342. [Google Scholar] [CrossRef]
- Hirayama, Y.; Takahashi, Y.K.; Hirosawa, S.; Hono, K. Intrinsic hard magnetic properties of Sm (Fe1−xCox)12 compound with the ThMn12 structure. Scr. Mater. 2017, 138, 62–65. [Google Scholar] [CrossRef]
- Sakuma, A.; Tanigawa, S.; Tokunaga, M. Micromagnetic studies of inhomogeneous nucleation in hard magnets. J. Magn. Magn. Mater. 1990, 84, 52–58. [Google Scholar] [CrossRef]
- Otsuka, K.; Kamata, M.; Nomura, T.; Iida, H.; Nakamura, H. Coercivities of Sm–Fe–M sintered magnets with ThMn12-type structure (M = Ti, V). Mater. Trans. 2021, 62, 887–891. [Google Scholar] [CrossRef]
- Zhang, J.S.; Tang, X.; Sepehri-Amin, H.; Srinithi, A.K.; Ohkubo, T.; Hono, K. Origin of coercivity in an anisotropic Sm (Fe, Ti, V) 12-based sintered magnet. Acta Mater. 2021, 217, 117161. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Srinithi, A.K.; Sepehri-Amin, H.; Ohkubo, T.; Hono, K. Role of V on the coercivity of SmFe12-based melt-spun ribbons revealed by machine learning and microstructure characterizations. Scr. Mater. 2021, 200, 113925. [Google Scholar] [CrossRef]
- Samata, H.; Fujiwara, N.; Nagata, Y.; Uchida, T.; Der Lan, M. Magnetic anisotropy and magnetostriction of SmFe2 crystal. J. Magn. Magn. Mater. 1999, 195, 376–383. [Google Scholar] [CrossRef]
- Tozman, P.; Sepehri-Amin, H.; Hono, K. Prospects for the development of SmFe12-based permanent magnets with a ThMn12-type phase. Scr. Mater. 2021, 194, 113686. [Google Scholar] [CrossRef]
- Srinithi, A.K.; Tang, X.; Sepehri-Amin, H.; Zhang, J.; Ohkubo, T.; Hono, K. High-coercivity SmFe12-based anisotropic sintered magnets by Cu addition. Acta Mater. 2023, 256, 119111. [Google Scholar] [CrossRef]
- Zhang, J.S.; Tang, X.; Bolyachkin, A.; Srinithi, A.K.; Ohkubo, T.; Sepehri-Amin, H.; Hono, K. Microstructure and extrinsic magnetic properties of anisotropic Sm (Fe, Ti, V)12-based sintered magnets. Acta Mater. 2022, 238, 118228. [Google Scholar] [CrossRef]
- Martins, T.B.; Rechenberg, H.R. Antiferromagnetic TiFe2 in applied fields: Experiment and simulation. Hyperfine Interact. 2006, 169, 1273–1277. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Wu, H.; Zhu, C.; Cheng, W.; Cao, S.; Luo, H.; Wu, L.; Chen, R.; Xia, W. Mechanism of Ti-rich grain boundary phase formation and coercivity reinforcement in Sm (Fe0.8Co0.2)11TiBx melt-spun ribbons. Scr. Mater. 2023, 227, 115281. [Google Scholar] [CrossRef]
- Dirba, I.; Harashima, Y.; Sepehri-Amin, H.; Ohkubo, T.; Miyake, T.; Hirosawa, S.; Hono, K. Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys. J. Alloys Compd. 2020, 813, 152224. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Zhang, X.; Bandaru, S.; Su, K.; Liu, X.; Zhou, Q.; Li, L.; Grenrche, J.; Jin, J. Effects of Sm content on the phase structure, microstructure and magnetic properties of the SmxZr0. 2 (Fe0.8Co0.2) 11.5 Ti0. 5 (x = 0.8–1.4) alloys. J. Alloys Compd. 2020, 828, 154428. [Google Scholar] [CrossRef]
- Zhao, L.; Grenrche, L. On the magnetism of grain boundary phase and its contribution to the abnormal openness of recoil loops in hot-deformed magnets. J. Phys. D Appl. Phys. 2020, 53, 095002. [Google Scholar] [CrossRef]
- Scholz, W.; Fidler, J.; Schrefl, T.; Suess, D.; Forster, H.; Tsiantos, V. Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 2003, 28, 366–383. [Google Scholar] [CrossRef]
- Duy, T.V.T.; Ozaki, T. A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations. Comput. Phys. Commun. 2014, 185, 777–789. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H. Efficient projector expansion for the ab initio LCAO method. Phys. Rev. B 2005, 72, 45121. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113. [Google Scholar] [CrossRef]
- Ozaki, T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 2003, 67, 155108. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hawai, T.; Ono, K. (Sm, Zr)Fe12−xMx (M = Zr, Ti, Co) for permanent-magnet applications: Ab initio material design integrated with experimental characterization. Phys. Rev. Appl. 2020, 13, 64028. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Terasawa, A.; Matsumoto, M.; Ozaki, T.; Gohda, Y. Efficient algorithm based on liechtenstein method for computing exchange coupling constants using localized basis set. J. Phys. Soc. Jpn. 2019, 88, 114706. [Google Scholar] [CrossRef]
- Han, M.J.; Ozaki, T.; Yu, J. Electronic structure, magnetic interactions, and the role of ligands in Mnn (n=4,12) single-molecule magnets. Phys. Rev. B 2004, 70, 184421. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Katsnelson, M.I.; Antropov, V.P.; Gubanov, V.A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987, 67, 65–74. [Google Scholar] [CrossRef]
- Wu, C.; Lin, K.J.; Cheng, Y.T.; Huang, C.; Pan, C.N.; Li, W.C.; Chiang, L.; Yeh, C.; Fong, S. Development of amorphous ribbon manufacturing technology. China Steel Tech. Rep. 2014, 27, 28–42. [Google Scholar]
- Liebermann, H.H. Rapidly solidified alloys made by chill block melt-spinning processes. J. Cryst. Growth 1984, 70, 497–506. [Google Scholar] [CrossRef]
- Fitzpatrick, J.R.; Ellis, B. X-ray diffraction studies of the structure of amorphous polymers. In The Physics of Glassy Polymers; Springer: Berlin/Heidelberg, Germany, 1973; pp. 108–152. [Google Scholar] [CrossRef]
- Tamura, T.; Li, M. Influencing factors on the amorphous phase formation in Fe–7.7 at% Sm alloys solidified by high-speed melt spinning. J. Alloys Compd. 2020, 826, 154010. [Google Scholar] [CrossRef]
- Demirel, A.; Çetin, E.C.; Karakuş, A.; Ataş, M.Ş.; Yildirim, M. Microstructural Evolution and oxidation BEhavior of fe-4cr-6ti fErritic alloy with fe2ti lavEs PhasE PrEciPitatEs. Arch. Metall. Mater. 2022, 67, 827–836. [Google Scholar] [CrossRef]
- Hono, K.; Sepehri-Amin, H. Reprint of Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scr. Mater. 2018, 154, 277–283. [Google Scholar] [CrossRef]
- Ener, S.; Skokov, K.P.; Palanisamy, D.; Devillers, T.; Fischbacher, J.; Eslava, G.G.; Maccari, F.; Schäfer, L.; Diop, L.V.; Radulov, I. Twins–A weak link in the magnetic hardening of ThMn12-type permanent magnets. Acta Mater. 2021, 214, 116968. [Google Scholar] [CrossRef]
- Palanisamy, D.; Ener, S.; Maccari, F.; Schäfer, L.; Skokov, K.P.; Gutfleisch, O.; Raabe, D.; Gault, B. Grain boundary segregation, phase formation, and their influence on the coercivity of rapidly solidified SmFe11Ti hard magnetic alloys. Phys. Rev. Mater. 2020, 4, 54404. [Google Scholar] [CrossRef]
- Koeble, J.; Huth, M. Field induced unidirectional magnetic anisotropy in Fe2Ti thin films. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich-Uetikon, Switzerland, 2001; pp. 137–140. [Google Scholar] [CrossRef]
- Hono, K.; Sepehri-Amin, H. Strategy for high-coercivity Nd–Fe–B magnets. Scr. Mater. 2012, 67, 530–535. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Qin, S.; Yang, K. Compressibility and phase transition of intermetallic compound Fe2Ti. J. Alloys Compd. 2013, 558, 160–163. [Google Scholar] [CrossRef]
- Pelloth, J.; Brand, R.A.; Keune, W. Local magnetic properties of the Fe2Ti Laves phase. J. Magn. Magn. Mater. 1995, 140, 59–60. [Google Scholar] [CrossRef]
- Li, J.; Tang, X.; Sepehri-Amin, H.; Sasaki, T.T.; Ohkubo, T.; Hono, K. Angular dependence and thermal stability of coercivity of Nd-rich Ga-doped Nd–Fe–B sintered magnet. Acta Mater. 2020, 187, 66–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Xu, S.; Xu, C.; Liu, X.; Pan, Y.; Wang, W.; Wu, Y.; Chen, P.; Liu, J.; Zhao, L.; et al. Tuning Fe2Ti Distribution to Enhance Extrinsic Magnetic Properties of SmFe12-Based Magnets. Crystals 2024, 14, 572. https://doi.org/10.3390/cryst14060572
Wei J, Xu S, Xu C, Liu X, Pan Y, Wang W, Wu Y, Chen P, Liu J, Zhao L, et al. Tuning Fe2Ti Distribution to Enhance Extrinsic Magnetic Properties of SmFe12-Based Magnets. Crystals. 2024; 14(6):572. https://doi.org/10.3390/cryst14060572
Chicago/Turabian StyleWei, Jinbo, Shuainan Xu, Chengyuan Xu, Xiaolian Liu, Yu Pan, Wei Wang, Yue Wu, Ping Chen, Jun Liu, Lizhong Zhao, and et al. 2024. "Tuning Fe2Ti Distribution to Enhance Extrinsic Magnetic Properties of SmFe12-Based Magnets" Crystals 14, no. 6: 572. https://doi.org/10.3390/cryst14060572
APA StyleWei, J., Xu, S., Xu, C., Liu, X., Pan, Y., Wang, W., Wu, Y., Chen, P., Liu, J., Zhao, L., & Zhang, X. (2024). Tuning Fe2Ti Distribution to Enhance Extrinsic Magnetic Properties of SmFe12-Based Magnets. Crystals, 14(6), 572. https://doi.org/10.3390/cryst14060572