Exploring the Interplay between Structure and Electronic Behavior across Pressure-Induced Isostructural and Structural Transitions in Weyl-Type Semimetal NbAs
Abstract
:1. Introduction
2. Materials and Methods
2.1. NbAs Single Crystals
2.2. Synchrotron X-ray Diffraction and Analysis
2.3. X-ray Absorption Spectroscopy
2.4. EXAFS Fitting
2.5. Computational Methods
3. Results
3.1. Pressure Evolution of the Bulk Structure of NbAs
3.2. XANES Analysis
3.3. EXAFS Analysis
4. Discussion
4.1. Pressure Evolution of the Bulk Structure
4.2. Pressure Evolution of the Medium-Range Structure
4.3. Pressure Evolution of the Short-Range Structure
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Wang, Z.; Ye, D.; Ran, L.; Fu, L.; Joannopoulos, J.D.; Soljačić, M. Experimental Observation of Weyl Points. Science (80-) 2015, 349, 622–624. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Chang, G.; Belopolski, I.; Bian, G.; Xu, S.Y.; Yin, J.X. Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter. Nat. Rev. Mater. 2021, 6, 784–803. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Xia, Y.; Wray, L.A.; Jia, S.; Meier, F.; Dil, J.H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H.; et al. Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator. Science (80-) 2011, 332, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Wilczek, F. Why Are There Analogies Between Condensed Matter and Particle Theory? Phys. Today 1998, 51, 11–13. [Google Scholar] [CrossRef]
- Xu, S.Y.; Alidoust, N.; Belopolski, I.; Yuan, Z.; Bian, G.; Chang, T.R.; Zheng, H.; Strocov, V.N.; Sanchez, D.S.; Chang, G.; et al. Discovery of a Weyl Fermion State with Fermi Arcs in Niobium Arsenide. Nat. Phys. 2015, 11, 748–754. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, R.-Y.; Gao, W.; Zhang, S.; Chan, C.T. Chiral Transport of Pseudospinors Induced by Synthetic Gravitational Field in Photonic Weyl Metamaterials. Phys. Rev. B 2021, 104, 045132. [Google Scholar] [CrossRef]
- Rocchino, L.; Balduini, F.; Schmid, H.; Molinari, A.; Luisier, M.; Süß, V.; Felser, C.; Gotsmann, B.; Zota, C.B. Magnetoresistive-Coupled Transistor Using the Weyl Semimetal NbP. Nat. Commun. 2024, 15, 710. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Zhen, J.; Huang, Q.; Wang, Y.; Dong, H.; Wan, S.; Zhang, S.; Feng, J.; Chen, B. Pressure-Quenched Superconductivity in Weyl Semimetal NbP Induced by Electronic Phase Transitions under Pressure. J. Phys. Chem. Lett. 2022, 13, 5514–5521. [Google Scholar] [CrossRef] [PubMed]
- Modic, K.A.; Meng, T.; Ronning, F.; Bauer, E.D.; Moll, P.J.W.; Ramshaw, B.J. Thermodynamic Signatures of Weyl Fermions in NbP. Sci. Rep. 2019, 9, 2095. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, B.; Huo, Z.; Liu, H.; Xu, Y.; Hu, Z.; Qiu, H. Preparation of NbAs Single Crystal by the Seed Growth Process. Crystals 2022, 12, 249. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.-L.; Dong, J.-K.; Xu, Y.; Li, N.-N.; Yang, W.-G.; Li, S.-Y. Structural and Transport Properties of the Weyl Semimetal NbAs at High Pressure. Chin. Phys. Lett. 2015, 32, 097102. [Google Scholar] [CrossRef]
- Arnold, F.; Shekhar, C.; Wu, S.; Sun, Y.; Donizeth, R.; Kumar, N.; Naumann, M.; Ajeesh, M.O.; Schmidt, M.; Grushin, A.G.; et al. Negative Magnetoresistance without Well-Defined Chirality in the Weyl Semimetal TaP. Nat. Commun. 2016, 7, 11615. [Google Scholar] [CrossRef] [PubMed]
- Samanta, K.; Noky, J.; Robredo, I.; Kuebler, J.; Vergniory, M.G.; Felser, C. Large Anomalous Hall, Nernst Effect and Topological Phases in the 3d-4d/5d-Based Oxide Double Perovskites. npj Comput. Mater. 2023, 9, 167. [Google Scholar] [CrossRef]
- Liu, J.; Vanderbilt, D. Weyl Semimetals from Noncentrosymmetric Topological Insulators. Phys. Rev. B-Condens. Matter Mater. Phys. 2014, 90, 155316. [Google Scholar] [CrossRef]
- Ojanen, T. Helical Fermi Arcs and Surface States in Time-Reversal Invariant Weyl Semimetals. Phys. Rev. B-Condens. Matter Mater. Phys. 2013, 87, 245112. [Google Scholar] [CrossRef]
- Yang, B.J.; Bahramy, M.S.; Arita, R.; Isobe, H.; Moon, E.G.; Nagaosa, N. Theory of Topological Quantum Phase Transitions in 3d Noncentrosymmetric Systems. Phys. Rev. Lett. 2013, 110, 086402. [Google Scholar] [CrossRef] [PubMed]
- Sanson, A.; Kantor, I.; Cerantola, V.; Irifune, T.; Carnera, A.; Pascarelli, S. Local Structure and Spin Transition in Fe2O3 Hematite at High Pressure. Phys. Rev. B 2016, 94, 2–8. [Google Scholar] [CrossRef]
- Greenberg, E.; Nazarov, R.; Landa, A.; Ying, J.; Hood, R.Q.; Hen, B.; Jeanloz, R.; Prakapenka, V.B.; Struzhkin, V.V.; Rozenberg, G.K.; et al. Phase Transitions and Spin State of Iron in FeO under the Conditions of Earth’s Deep Interior. Phys. Rev. B 2023, 107, 37–39. [Google Scholar] [CrossRef]
- Rodrigues, J.E.; Rosa, A.D.; Gainza, J.; Silva, R.S.; Mijit, E.; Garbarino, G.; Irifune, T.; Shinmei, T.; Dejoie, C.; Nemes, N.M.; et al. Mapping Pressure- and Temperature-Induced Structural and Magnetic Transitions in Perovskite PrNiO3 with Local and Long-Range Probes. Chem. Mater. 2024, 36, 596–608. [Google Scholar] [CrossRef]
- Rodrigues, J.E.; Rosa, A.; Garbarino, G.; Irifune, T.; Martínez, J.L.; Alonso, J.A.; Mathon, O. Evidence for a Pressure-Induced Phase Transition in the Highly Distorted TlNiO3 Nickelate. Chem. Mater. 2023, 35, 5079–5090. [Google Scholar] [CrossRef]
- Ajeesh, M.O.; Materne, P.; Reis, R.D.d.; Weber, K.; Dengre, S.; Sarkar, R.; Khasanov, R.; Kraft, I.; León, A.M.; Bi, W.; et al. Interplay of Structure and Magnetism in LuFe4Ge2 Tuned by Hydrostatic Pressure. Phys. Rev. B-Condens. Matter Mater. Phys. 2023, 125136, 125136. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, F.; Wen, X.; Gui, Z.; Zhang, Y.; Zhan, F.; Wang, R.; Ying, J.; Chen, X. Pressure-Induced Transition from a Mott Insulator to a Ferromagnetic Weyl Metal in La2O3Fe2Se2. Nat. Commun. 2023, 14, 2260. [Google Scholar] [CrossRef] [PubMed]
- Harms, N.C.; Matsuoka, T.; Samanta, S.; Clune, A.J.; Smith, K.A.; Haglund, A.V.; Feng, E.; Cao, H.; Smith, J.S.; Mandrus, D.G.; et al. Symmetry Progression and Possible Polar Metallicity in NiPS3 under Pressure. npj 2D Mater. Appl. 2022, 6, 40. [Google Scholar] [CrossRef]
- Gavriliuk, A.G.; Struzhkin, V.V.; Ivanova, A.G.; Prakapenka, V.B.; Mironovich, A.A.; Aksenov, S.N.; Troyan, I.A.; Morgenroth, W. The First-Order Structural Transition in NiO at High Pressure. Commun. Phys. 2023, 6, 23. [Google Scholar] [CrossRef]
- Bandiello, E.; Gallego-Parra, S.; Liang, A.; Sans, J.A.; Cuenca-Gotor, V.; Lora da Silva, E.; Vilaplana, R.; Rodríguez-Hernández, P.; Muñoz, A.; Diaz-Anichtchenko, D.; et al. Structural, Vibrational, and Electronic Behavior of Two GaGeTe Polytypes under Compression. Mater. Today Adv. 2023, 19, 100403. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Rao, W.; Hao, J.; Li, Y. Prediction of High-Pressure Phases of Weyl Semimetal NbAs and NbP. Sci. Rep. 2017, 7, 13251. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.N.; Singh, A.; Pal, K.; Muthu, D.V.S.; Shekhar, C.; Elghazali, M.A.; Naumov, P.G.; Medvedev, S.A.; Felser, C.; Waghmare, U.V.; et al. Pressure-Induced Lifshitz and Structural Transitions in NbAs and TaAs: Experiments and Theory. J. Phys. Condens. Matter 2018, 30, 185401. [Google Scholar] [CrossRef] [PubMed]
- Pratesi, G.; Cicco, A.D.; Minicucci, M.; Itiè, J.P. Anomalies in the Structure of Solid Cd under Pressure: An x-Ray Diffraction Study. J. Phys. Condens. Matter 2005, 17, 2625–2632. [Google Scholar] [CrossRef]
- Lee, P.A.; Citrin, P.H.; Eisenberger, P.; Kincaid, B.M. Extended X-ray Absorption Fine Structure Its Strengths and Limitations as a Structural Tool. Rev. Mod. Phys. 1981, 53, 769–806. [Google Scholar] [CrossRef]
- Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The Crystallography Stations at the Alba Synchrotron. Eur. Phys. J. Plus 2015, 130, 160. [Google Scholar] [CrossRef]
- Shen, G.; Wang, Y.; Dewaele, A.; Wu, C.; Fratanduono, D.E.; Eggert, J.; Klotz, S.; Dziubek, K.F.; Loubeyre, P.; Fat’yanov, O.V.; et al. Toward an International Practical Pressure Scale: A Proposal for an IPPS Ruby Gauge (IPPS-Ruby2020). High Press. Res. 2020, 40, 299–314. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A Program for Reduction of Two-Dimensional X-ray Diffraction Data and Data Exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Phys. Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Rosa, A.D.; Garbarino, G.; Rodrigues, J.E.; Mijit, E.; Jacobs, J.; Bugnazet, D.; Pasternak, S.; Berruyer, G.; Moyne, A.; Clavel, C.; et al. New Opportunities for High Pressure X-ray Absorption Spectroscopy at ID24-DCM and BM23 with the Extremely Brilliant Source of the ESRF. High Press. Res. 2024, 35, 1–29. [Google Scholar] [CrossRef]
- Mathon, O.; Beteva, A.; Borrel, J.; Bugnazet, D.; Gatla, S.; Hino, R.; Kantor, I.; Mairs, T.; Munoz, M.; Pasternak, S.; et al. The Time-Resolved and Extreme Conditions XAS (Texas) Facility at the European Synchrotron Radiation Facility: The General-Purpose EXAFS Bending-Magnet Beamline BM23. J. Synchrotron Radiat. 2015, 22, 1548–1554. [Google Scholar] [CrossRef]
- Rosa, A.D.; Mathon, O.; Torchio, R.; Jacobs, J.; Pasternak, S.; Irifune, T.; Pascarelli, S. Nano-Polycrystalline Diamond Anvils: Key Devices for XAS at Extreme Conditions: Their Use, Scientific Impact, Present Status and Future Needs. High Press. Res. 2020, 40, 65–81. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Willerström, J.-O. Stacking Disorder in NbP, TaP, NbAs and TaAs. J. Less Common Met. 1984, 99, 273–283. [Google Scholar] [CrossRef]
- Kas, J.J.; Vila, F.D.; Rehr, J.J. The FEFF Code; Wiley Online Library: Chester, UK, 2020; pp. 1–6. ISBN 9781119433941. [Google Scholar]
- Chantler, C.T. X-ray Absorption Spectroscopy Definitions; Wiley Online Library: Chester, UK, 2021; pp. 1–9. ISBN 9781119433941. [Google Scholar]
- Bunău, O.; Joly, Y. Self-Consistent Aspects of x-Ray Absorption Calculations. J. Phys. Condens. Matter 2009, 21, 345501. [Google Scholar] [CrossRef]
- Dowty, E. Fully Automated Microcomputer Calculation of Vibrational Spectra. Phys. Chem. Miner. 1987, 14, 67–79. [Google Scholar] [CrossRef]
- Paraguassu, W.; Freire, P.T.C.; Lemos, V.; Lala, S.M.; Montoro, L.A.; Rosolen, J.M. Phonon Calculation on Olivine-like LiMPO4 (M = Ni, Co, Fe) and Raman Scattering of the Iron-Containing Compound. J. Raman Spectrosc. 2005, 36, 213–220. [Google Scholar] [CrossRef]
- Dowty, E. Vibrational Interactions of Tetrahedra in Silicate Glasses and Crystals—III. Calculations on Simple Sodium and Lithium Silicates, Thortveitite and Rankinite. Phys. Chem. Miner. 1987, 14, 542–552. [Google Scholar] [CrossRef]
- Ferrer, M.M.; Rodrigues, J.E.F.S.; Almeida, M.A.P.; Moura, F.; Longo, E.; Pizani, P.S.; Sambrano, J.R. Theoretical Methods for Calculations of Optical Phonons in BiOBr: Analysis and Correction of Propagated Errors. J. Raman Spectrosc. 2018, 49, 1356–1363. [Google Scholar] [CrossRef]
- Rodrigues, J.E.; Ferrer, M.M.; Cunha, T.R.; Costa, R.C.; Sambrano, J.R.; Rodrigues, A.D.; Pizani, P.S. First-Principles Calculations and Raman Scattering Evidence for Local Symmetry Lowering in Rhombohedral Ilmenite: Temperature- and Pressure-Dependent Studies. J. Phys. Condens. Matter 2018, 30, 485401. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Katsura, T.; Tange, Y. A Simple Derivation of the Birch–Murnaghan Equations of State (EOSs) and Comparison with EOSs Derived from Other Definitions of Finite Strain. Minerals 2019, 9, 745. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Rose, J.H.; Smith, J.R. Compressibility of Solids. J. Geophys. Res. Solid Earth 1987, 92, 9319–9325. [Google Scholar] [CrossRef]
- The Materials Project. Materials Data on NbAs by Materials Project. Available online: https://doi.org/10.17188/1195730 (accessed on 17 June 2024).
- Einaga, M.; Shimizu, K.; Hu, J.; Mao, Z.Q.; Politano, A. Resistivity of Weyl Semimetals NbP and TaP under Pressure. Phys. Status Solidi-Rapid Res. Lett. 2017, 11, 1700182. [Google Scholar] [CrossRef]
- Celeste, A.; Borondics, F.; Capitani, F. Hydrostaticity of Pressure-Transmitting Media for High Pressure Infrared Spectroscopy. High Press. Res. 2019, 39, 608–618. [Google Scholar] [CrossRef]
- Jaouen, N.; Dhaussy, A.C.; Itié, J.P.; Rogalev, A.; Marinel, S.; Joly, Y. High-Pressure Dependent Ferroelectric Phase Transition in Lead Titanate. Phys. Rev. B-Condens. Matter Mater. Phys. 2007, 75, 224115. [Google Scholar] [CrossRef]
- Pellicer-Porres, J.; Segura, A.; Muñoz, V.; San Miguel, A. High-Pressure X-ray Absorption Study of InSe. Phys. Rev. B-Condens. Matter Mater. Phys. 1999, 60, 3757–3763. [Google Scholar] [CrossRef]
- Pellicer-Porres, J.; Segura, A.; Muñoz, V.; San Miguel, A. High-Pressure X-ray Absorption Study of GaTe Including Polarization. Phys. Rev. B-Condens. Matter Mater. Phys. 2000, 61, 125–131. [Google Scholar] [CrossRef]
- Lucazeau, G. Effect of Pressure and Temperature on Raman Spectra of Solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496. [Google Scholar] [CrossRef]
- Purans, J.; Menushenkov, A.P.; Besedin, S.P.; Ivanov, A.A.; Minkov, V.S.; Pudza, I.; Kuzmin, A.; Klementiev, K.V.; Pascarelli, S.; Mathon, O.; et al. Local Electronic Structure Rearrangements and Strong Anharmonicity in YH3 under Pressures up to 180 GPa. Nat. Commun. 2021, 12, 1765. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, V.; Monteseguro, V.; Otero-De-La-Roza, A.; El Idrissi, M.; Mathon, O.; Shinmei, T.; Irifune, T.; Sanson, A. Interplay between Local Structure, Vibrational and Electronic Properties on CuO under Pressure. Phys. Chem. Chem. Phys. 2020, 22, 24299–24309. [Google Scholar] [CrossRef] [PubMed]
- Marini, C.; Noked, O.; Kantor, I.; Joseph, B.; Mathon, O.; Shuker, R.; Kennedy, B.J.; Pascarelli, S.; Sterer, E. Nb K-Edge X-ray Absorption Investigation of the Pressure Induced Amorphization in A-Site Deficient Double Perovskite La1/3NbO3. J. Phys. Condens. Matter 2016, 28, 45401. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, D.L.; Bauman, R.P.; Porto, S.P.S. Normal Mode Determination in Crystals. J. Raman Spectrosc. 1981, 10, 253–290. [Google Scholar] [CrossRef]
- Bird, T.A.; Wilkinson, M.G.L.; Keen, D.A.; Smith, R.I.; Bristowe, N.C.; Dove, M.T.; Phillips, A.E.; Senn, M.S. Soft-Mode Anisotropy in the Negative Thermal Expansion Material ReO3. Phys. Rev. B 2021, 104, 214102. [Google Scholar] [CrossRef]
- Toulouse, C.; Amoroso, D.; Oliva, R.; Xin, C.; Bouvier, P.; Fertey, P.; Veber, P.; Maglione, M.; Ghosez, P.; Kreisel, J.; et al. Stability of the Tetragonal Phase of BaZrO3 under High Pressure. Phys. Rev. B 2022, 106, 064105. [Google Scholar] [CrossRef]
Parameters | Murnaghan † | Birch–Murnaghan † | Rose–Vinet † | DFT # |
---|---|---|---|---|
(Å3) | 139.24 (0.13) | 139.23 (0.14) | 139.24 (0.13) | 141.92 |
(GPa) | 180.2 (14.3) | 179.3 (16.6) | 179.2 (15.1) | 163 |
10.2 (2.3) | 11.4 (3.5) | 11.0 (2.7) | - | |
0.99573 | 0.99565 | 0.99567 | - |
EXAFS at ~0.1 GPa | XRD at 0 GPa | |||
---|---|---|---|---|
Path | (Å) † | (×10−3 Å2) † | CN † | (Å) † |
Nb–As(1) | 2.617 (2) | 3.4 (1) | 6 | 2.635 |
Nb–Nb(1) | 3.429 (4) | 6.5 (3) | 8 | 3.443 |
Nb–As(2) | 4.30 (1) | 5.3 (9) | 4 | 4.357 |
Nb–Nb(2) | 4.866 (7) | 5.1 (5) | 8 | 4.869 |
R-factor | 0.0110 | 203.58 | ||
(Å−1) | 16 | (Å) | 3.5 | |
35 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.E.F.S.; Mijit, E.; Rosa, A.D.; Silenzi, L.; Hara, N.; Popescu, C.; Alonso, J.A.; Irifune, T.; Hu, Z.; Di Cicco, A. Exploring the Interplay between Structure and Electronic Behavior across Pressure-Induced Isostructural and Structural Transitions in Weyl-Type Semimetal NbAs. Crystals 2024, 14, 578. https://doi.org/10.3390/cryst14070578
Rodrigues JEFS, Mijit E, Rosa AD, Silenzi L, Hara N, Popescu C, Alonso JA, Irifune T, Hu Z, Di Cicco A. Exploring the Interplay between Structure and Electronic Behavior across Pressure-Induced Isostructural and Structural Transitions in Weyl-Type Semimetal NbAs. Crystals. 2024; 14(7):578. https://doi.org/10.3390/cryst14070578
Chicago/Turabian StyleRodrigues, João E. F. S., Emin Mijit, Angelika D. Rosa, Laura Silenzi, Nodoka Hara, Catalin Popescu, José A. Alonso, Tetsuo Irifune, Zhiwei Hu, and Andrea Di Cicco. 2024. "Exploring the Interplay between Structure and Electronic Behavior across Pressure-Induced Isostructural and Structural Transitions in Weyl-Type Semimetal NbAs" Crystals 14, no. 7: 578. https://doi.org/10.3390/cryst14070578
APA StyleRodrigues, J. E. F. S., Mijit, E., Rosa, A. D., Silenzi, L., Hara, N., Popescu, C., Alonso, J. A., Irifune, T., Hu, Z., & Di Cicco, A. (2024). Exploring the Interplay between Structure and Electronic Behavior across Pressure-Induced Isostructural and Structural Transitions in Weyl-Type Semimetal NbAs. Crystals, 14(7), 578. https://doi.org/10.3390/cryst14070578