The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern
Abstract
:1. Introduction
- (i)
- An in-depth characterisation of the different shell, ornamentation, and myostracal microstructures and textures for two Chama species;
- (ii)
- Juxtaposes these;
- (iii)
- Indicates the crystal growth mechanisms for the different shell layers;
- (iv)
- Our study highlights, in particular, structural characteristics of the myostracal valve sections, including pallial and adductor myostraca. While the microstructure and texture of pedal and adductor myostraca are investigated by now with EBSD (for Glycymeris species [7]), the measured pattern of crystal organisation for the pallial myostracum has not been reported yet. The latter is performed in this study;
- (v)
- Myostracal pillars are prominent structures for Chamidae [5]. We characterise the microstructure and texture of these and trace them from the pallial myostracum to the inner shell surfaces.
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation for Electron Backscattered Diffraction (EBSD) Measurements, Field Emission Scanning Electron Microscopy (FE-SEM), and Laser Confocal Microscope Imaging
2.2.2. Secondary Electron (SE), Backscatter Electron (BSE) Imaging, and Electron Backscattered Diffraction (EBSD) Measurements
2.3. Terminology
3. Results
4. Discussion
4.1. The Microstructures, Textures, and Changeover between Different Crystal Assemblies
4.2. Ornamentation Morphology and Crystallography
4.3. Microstructural Anomalies
- Myostracal pillars or the complex crossed-lamellar layer along the inner shell surface
- 2.
- Formation of single crystal-like units in the crossed-lamellar layer
5. Conclusions
- For C. arcana and C. gryphoides, five distinct microstructures can be observed. From the outer to the inner shell surface, these microstructures are Prismatic calcite (only in the ornamentations of C. arcana), complex crossed-lamellar-type aragonite (only in the ornamentations of C. gryphoides), and crossed-lamellar, myostracal, and complex crossed-lamellar aragonite;
- Depending on the type of muscle attachment, myostracal microstructures may appear as thick patches (adductor), as a thin and hollow hemisphere (pallial), or as pillars arising from the pallial myostracum;
- In some, but not all, shells of C. arcana, myostracal pillars traverse the inner complex crossed-lamellar layer. They have a spherulite-resembling shape comprising large aragonite prisms that grow continuously from the pallial myostracum and, most probably, follow a competitive growth mechanism;
- Myostracal pillars adapt to the texture of the pallial myostracum. Muscular detachment and reattachment can cause myostracal pillars to be interrupted by sheets of complex crossed-lamellar shell material. With further growth of the shell, the competitive growth mechanism restarts and assumes at first the texture of the preceding (in this case, complex crossed-lamellar) layer;
- The pallial and adductor myostraca follow a competitive growth mechanism. The crystal orientation pattern of the crossed-lamellar layer is transmitted onto the myostracum and onto the complex crossed-lamellar layer. The changeover region from crossed-lamellar to myostracal layers in C. arcana shells features large (up to 100 μm), single-crystal-like crystals with irregular morphologies twinned along one or few boundaries. These crystals were not yet observed in crossed-lamellar layers, and their origin and growth mechanism are not known yet;
- Ornamentations in chamid bivalves may be either calcitic or aragonitic. Calcitic ornamentations (e.g., in C. arcana) comprise a prismatic microstructure of large (up to 200 μm in diameter) crystals that have their c-axes oriented perpendicular to the outer shell surface defined by the periostracum. The aragonitic ornamentations in C. gryphoides comprise a complex crossed-lamellar-type microstructure that resembles the inner layer featuring first-order-lamellar blocks that comprise small third-order lamellae;
- The crystal orientation pattern is transmitted at the changeover from the aragonitic ornamentation to the crossed-lamellar shell in C. gryphoides. Since the textures of the complex crossed-lamellar-type ornamentation (axial) and of the crossed-lamellar layer (3D “single-crystal-like”) are different, the crystal orientation pattern is lost a few μm after the interface;
- The changeover from the calcitic ornamentation to the crossed-lamellar layer in C. arcana is sharp and features an organic-rich aragonite sheet that might be needed to mediate the biologically controlled growth of the crossed-lamellar layer and to connect the two layers;
- The serrated interface between calcitic ornamentations and the aragonitic crossed-lamellar layer in C. arcana exposes some regular (104) growth faces of calcite, resembling the morphology of idiomorphic crystals. As indicated by the disordered crystal arrangement and substructured, irregular units, the crystal growth mechanism of the calcitic ornamentation seems to be predominantly physical.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harayashiki, C.A.Y.; Márquez, F.; Cariou, E.; Castro, Í.B. Mollusk Shell Alterations Resulting from Coastal Contamination and Other Environmental Factors. Environ. Pollut. 2020, 265, 114881. [Google Scholar] [CrossRef]
- Kobayashi, I. Evolutionary Trends of Shell Microstructure in Bivalve Molluscs. In Mechanisms and Phylogeny of Mineralization in Biological Systems; Springer: Tokyo, Japan, 1991; pp. 415–419. [Google Scholar]
- Stanley, S.M. Adaptive Themes in the Evolution of the Bivalvia (Mollusca). Annu. Rev. Earth Planet. Sci. 1975, 3, 361. [Google Scholar] [CrossRef]
- Castro-Claros, J.D.; Checa, A.; Lucena, C.; Pearson, J.R.; Salas, C. Shell-Adductor Muscle Attachment and Ca2+ Transport in the Bivalves Ostrea stentina and Anomia ephippium. Acta Biomater. 2021, 120, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.D.; Kennedy, W.J.; Hall, A. The Shell Structure and Mineralogy of the Bivalvia Introduction. Nuculacea—Trigonacea. Bull. Br. Mus. Nat. Hist. Zool. Suppl. 1969, 3, 1–125. [Google Scholar] [CrossRef]
- Liao, Z.; Bao, L.; Fan, M.; Gao, P.; Wang, X.; Qin, C.; Li, X. In-Depth Proteomic Analysis of Nacre, Prism, and Myostracum of Mytilus Shell. J. Proteom. 2015, 122, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Crippa, G.; Griesshaber, E.; Checa, A.G.; Harper, E.M.; Simonet Roda, M.; Schmahl, W.W. Orientation Patterns of Aragonitic Crossed-Lamellar, Fibrous Prismatic and Myostracal Microstructures of Modern Glycymeris Shells. J. Struct. Biol. 2020, 212, 107653. [Google Scholar] [CrossRef]
- Le Moine, T. Characterization of the Microstructure and the Texture of Calcium Carbonate Crystals in Bivalve Shells. Master’s Thesis, Ludwig-Maximilians-Universität, München, Germany, 2022. [Google Scholar]
- Hoerl, S.; Le Moine, T.; Peter, N.J.; Amini, S.; Griesshaber, E.; Wang, J.; Harper, E.M.; Salas, C.; Checa, A.G.; Schwaiger, R.; et al. Crystal Organisation and Material Properties of Chama and Glycymeris Myostraca and Shells. Materialia 2024, 36, 102149. [Google Scholar] [CrossRef]
- Nakahara, H.; Bevelander, G. The Formation and Growth of the Prismatic Layer of Pinctada radiata. Calcif. Tissue Res. 1971, 7, 31–45. [Google Scholar] [CrossRef]
- Kennedy, W.J.; Taylor, J.D.; Hall, A. Environmental and Biological Controls on Bivalve Shell Mineralogy. Biol. Rev. 1969, 44, 499–530. [Google Scholar] [CrossRef]
- Taylor, J.; Kennedy, W.; Hall, A. The Shell Structure and Mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea, Conclusions. Bull. Br. Mus. Nat. Hist. Zool. 1973, 22, 255–294. [Google Scholar] [CrossRef]
- Lee, S.-W.; Jang, Y.-N.; Kim, J.-C. Characteristics of the Aragonitic Layer in Adult Oyster Shells, Crassostrea gigas: Structural Study of Myostracum Including the Adductor Muscle Scar. Evid. Based Complement. Altern. Med. 2011, 2011, 1–10. [Google Scholar] [CrossRef]
- Yonge, M. Form, Habit and Evolution in the Chamidae (Bivalvia) with Reference to Conditions in the Rudists (Hippuritacea). Phil. Trans. R. Soc. Lon. B. 1967, 252, 49–105. [Google Scholar]
- Matsukuma, A.; Hamada, N.; Scott, P.H. Chama pulchella (Bivalvia: Heterodonta) with Transposed Shell and Normal Dentition. Venus Jpn. J. Malacol. 1997, 56, 221–231. [Google Scholar] [CrossRef]
- Beratis, I. Interpretation of the Miocene Fossils in the Strymon Basin in Northern Greece to Determine Their Habitat. ASN 2019, 6, 130–144. [Google Scholar] [CrossRef]
- Krylova, E. Bivalves of Seamounts of the North-Eastern Atlantic. In Biogeography of the North Atlantic Seamounts; KMK Scientific Press, Ltd.: Moscow, Russia, 2006; pp. 76–95. [Google Scholar]
- Matsukuma, A. A New Genus and Four New Species of Chamidae (Mollusca, Bivalvia) from the Indo-West Pacific with Reference to Transposed Shells. Bull. Mus. Natl. Hist. Nat. Sect. A Zool. Biol. Écol. Anim. 1996, 18, 23–53. [Google Scholar] [CrossRef]
- Allen, J.A. On the Biology and Functional Morphology of Chama gryphoides Linne (Bivalvia; Chamidae). Vie Milieu 1976, 26, 243–260. [Google Scholar]
- Nicol, D. Nomenclatural Review of Genera and Subgenera of Chamidae. J. Wash. Acad. Sci. 1952, 42, 154–156. [Google Scholar]
- Berezovsky, A.A. Redescription of Chama clavaticostata Klushnikov (Bivalvia) from the Middle Eocene of Ukraine. Paleontol. J. 2021, 55, 272–276. [Google Scholar] [CrossRef]
- Reeve, L.A. (Ed.) Monograph of the Genus Chama; L. Reeve & Co.: London, UK, 1847; Volume 4, p. 9. [Google Scholar]
- Pastorino, G. The Genus Chama Linné (Bivalvia) in the Marine Quaternary of Northern Patagonia, Argentina. J. Paleontol. 1991, 65, 756–760. [Google Scholar] [CrossRef]
- Vance, R.R. A Mutualistic Interaction between a Sessile Marine Clam and Its Epibionts. Ecology 1978, 59, 679–685. [Google Scholar] [CrossRef]
- Patton, M.L.; Brown, S.T.; Harman, R.F.; Grove, R.S. Effect of the Anemone Corynactis californica on Subtidal Predation by Sea Stars in the Southern California Bight. Bull. Mar. Sci. 1991, 48, 623–634. [Google Scholar]
- Checa, A.G. Physical and Biological Determinants of the Fabrication of Molluscan Shell Microstructures. Front. Mar. Sci. 2018, 5, 353. [Google Scholar] [CrossRef]
- Schäffer, T.E.; Ionescu-Zanetti, C.; Proksch, R.; Fritz, M.; Walters, D.A.; Almqvist, N.; Zaremba, C.M.; Belcher, A.M.; Smith, B.L.; Stucky, G.D.; et al. Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges? Chem. Mater. 1997, 9, 1731–1740. [Google Scholar] [CrossRef]
- Feng, Q.L.; Li, H.B.; Cui, F.Z.; Kim, T.N.; Li, H.D. Crystal Orientation Domains Found in the Single Lamina in Nacre of the Mytilus edulis Shell. J. Mater. Sci. Lett. 1999, 18, 1547–1549. [Google Scholar] [CrossRef]
- Rousseau, M.; Lopez, E.; Stempflé, P.; Brendlé, M.; Franke, L.; Guette, A.; Naslain, R.; Bourrat, X. Multiscale Structure of Sheet Nacre. Biomaterials 2005, 26, 6254–6262. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Xia, M.; Li, H.; Chen, T.; Ye, Y.; Zheng, H. Bivalve Shell: Not an Abundant Useless Waste but a Functional and Versatile Biomaterial. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2502–2530. [Google Scholar] [CrossRef]
- Harper, E.M. Calcite in Chamid Bivalves. J. Molluscan Stud. 1998, 64, 391–399. [Google Scholar] [CrossRef]
- Agbaje, O.B.A.; Wirth, R.; Morales, L.F.G.; Shirai, K.; Kosnik, M.; Watanabe, T.; Jacob, D.E. Architecture of Crossed-Lamellar Bivalve Shells: The Southern Giant Clam (Tridacna derasa, Röding, 1798). R. Soc. Open Sci. 2017, 4, 170622. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Kumar, M.; Adams, B.L. (Eds.) Electron Backscatter Diffraction in Materials Science; Springer: Boston, MA, USA, 2000; ISBN 978-1-4757-3207-8. [Google Scholar]
- Hahn, T.; Klapper, H. Twinning of Crystals. In International Tables for Crystallography; Authier, A., Ed.; International Tables for Crystallography; International Union of Crystallography: Chester, UK, 2006; Volume D, pp. 393–448. ISBN 978-1-4020-0714-9. [Google Scholar]
- Griesshaber, E.; Schmahl, W.W.; Ubhi, H.S.; Huber, J.; Nindiyasari, F.; Maier, B.; Ziegler, A. Homoepitaxial Meso- and Microscale Crystal Co-Orientation and Organic Matrix Network Structure in Mytilus edulis Nacre and Calcite. Acta Biomater. 2013, 9, 9492–9502. [Google Scholar] [CrossRef]
- De Villiers, J.P.R. Crystal Structures of Aragonite, Strontianite, and Witherite. Am. Min. 1971, 56, 758–767. [Google Scholar]
- Bragg, W.L. The Refractive Indices of Calcite and Aragonite. Proc. R. Soc. Lond. A 1924, 105, 370–386. [Google Scholar] [CrossRef]
- Kennedy, J.W.; Morris, N.J.; Taylor, J.D. The Shell Structure, Mineralogy and Relationships of the Chamacea (Bivalvia). Paleontol. 1970, 13, 379–413. [Google Scholar]
- Peter, N.J.; Griesshaber, E.; Reisecker, C.; Hild, S.; Oliveira, M.V.; Schmahl, W.W.; Schneider, A.S. Biological crystal assembly patterns, biopolymer distribution and material property relationships in Mytilus galloprovincialis, Bivalvia, and Haliotis glabra, Gastropoda, shells. Materialia 2023, 28, 101749. [Google Scholar] [CrossRef]
- Rathi, P. Modes of Carbonate Crystal Organization at Muscle Attachment Sites of Bivalve Shells. Master’s Thesis, Ludwig-Maximilians-Universität, München, Germany, 2023. [Google Scholar]
- Iglikowska, A.; Przytarska, J.; Humphreys-Williams, E.; Najorka, J.; Chełchowski, M.; Sowa, A.; Hop, H.; Włodarska-Kowalczuk, M.; Kukliński, P. Shell Mineralogy and Chemistry—Arctic Bivalves in a Global Context. Mar. Pollut. Bull. 2023, 189, 114759. [Google Scholar] [CrossRef] [PubMed]
- Bøggild, O.B. The Shell Structure of the Mollusks. K. Dan. Vidensk. Selsk. Skr. Naturvidensk. Math. Afd. 9 1930, 2, 231–326. [Google Scholar]
- Tevesz, M.J.S.; McCall, P.L. Evolution of Substratum Preference in Bivalves (Mollusca). J. Paleontol. 1979, 53, 112–120. [Google Scholar]
- Morton, B.; Machado, F.M. Predatory Marine Bivalves: A Review. In Advances in Marine Biology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 84, pp. 1–98. ISBN 978-0-12-821794-8. [Google Scholar]
- MacClintock, C. Shell Structure of Patelloid and Bellerophontoid Gastropods (Mollusca). Peabody Mus. Nat. Hist. Yale Univ. Bull. 1967, 22, 1–140. [Google Scholar]
- Carter, J.G. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends: Volume I; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Kobayashi, I.; Samata, T. Bivalve Shell Structure and Organic Matrix. Mater. Sci. Eng. C 2006, 26, 692–698. [Google Scholar] [CrossRef]
- Carter, J.G.; Harries, P.; Malchus, N.; Sartori, A.; Anderson, L.; Bieler, R.; Bogan, A.; Coan, E.; Cope, J.; Cragg, S. Treatise Online No. 48: Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia. 2012. Available online: https://journals.ku.edu/treatiseonline/article/view/4322 (accessed on 25 April 2024).
- Popov, S.V. Formation of Bivalve Shells and Their Microstructure. Paleontol. J. 2014, 48, 1519–1531. [Google Scholar] [CrossRef]
- Marie, B.; Joubert, C.; Tayalé, A.; Zanella-Cléon, I.; Belliard, C.; Piquemal, D.; Cochennec-Laureau, N.; Marin, F.; Gueguen, Y.; Montagnani, C. Different Secretory Repertoires Control the Biomineralization Processes of Prism and Nacre Deposition of the Pearl Oyster Shell. Proc. Natl. Acad. Sci. USA 2012, 109, 20986–20991. [Google Scholar] [CrossRef]
- Marie, B.; Le Roy, N.; Marie, A.; Dubost, L.; Milet, C.; Bedouet, L.; Becchi, M.; Zanella-Cléon, I.; Jackson, D.; Degnan, B.; et al. Nacre Evolution: A Proteomic Approach. MRS Proc. 2009, 1187, 1187-KK01-03. [Google Scholar] [CrossRef]
- Runnegar, B.; Pojeta, J. Origin and Diversification of the Mollusca. In Evolution; Elsevier: Amsterdam, The Netherlands, 1985; pp. 1–57. ISBN 978-0-12-751410-9. [Google Scholar]
- Jackson, D.J.; McDougall, C.; Woodcroft, B.; Moase, P.; Rose, R.A.; Kube, M.; Reinhardt, R.; Rokhsar, D.S.; Montagnani, C.; Joubert, C.; et al. Parallel Evolution of Nacre Building Gene Sets in Molluscs. Mol. Biol. Evol. 2010, 27, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.S.; Peck, L.S.; Arivalagan, J.; Backeljau, T.; Berland, S.; Cardoso, J.C.; Caurcel, C.; Chapelle, G.; De Noia, M.; Dupont, S. Deciphering Mollusc Shell Production: The Roles of Genetic Mechanisms through to Ecology, Aquaculture and Biomimetics. Biol. Rev. 2020, 95, 1812–1837. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Nakayama, S.; Nagasawa, H.; Kogure, T. Initial Formation of Calcite Crystals in the Thin Prismatic Layer with the Periostracum of Pinctada fucata. Micron 2013, 45, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Lima, M.; Rocha, A.; Gonçalves, F.; Andrade, J.; Machado, J. Microstructural Characterization of Inner Shell Layers in the Freshwater Bivalve Anodonta cygnea. J. Shellfish Res. 2010, 29, 969–973. [Google Scholar] [CrossRef]
- Harper, E.M.; Checa, A. Physiological versus Biological Control in Bivalve Calcite Prisms: Comparison of Euheterodonts and Pteriomorphs. Biol. Bull. 2017, 232, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Cuif, J.-P.; Lo, C.; Dauphin, Y. Evidence of a Scheduled End for Prism Growth in the Shell of Pinctada margaritifera: Closure of the Calcite Biomineralization Area by a Specific Organic Membrane. Minerals 2023, 14, 20. [Google Scholar] [CrossRef]
- Trueman, E.; Brand, A.; Davis, P. The Effect of Substrate and Shell Shape on the Burrowing of Some Common Bivalves. J. Molluscan Stud. 1966, 37, 97–109. [Google Scholar] [CrossRef]
- Kauffman, E.G. Form, Function, and Evolution. In Treatise on Invertebrate Paleontology; Moore, R.C., Ed.; Part N; University of Kansas Press: Lawrence, KS, USA, 1969; Volume 1, pp. N130–N205. [Google Scholar]
- Aller, R.C. Prefabrication of Shell Ornamentation in the Bivalve Laternula. Lethaia 1974, 7, 43–56. [Google Scholar] [CrossRef]
- Stanley, S.M. Infaunal Survival: Alternative Functions of Shell Ornamentation in the Bivalvia (Mollusca). Paleobiology 1981, 7, 384–393. [Google Scholar] [CrossRef]
- Stanley, S.M. Bivalve Mollusk Burrowing Aided by Discordant Shell Ornamentation. Science 1969, 166, 634–635. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.M. Relation of Shell Form to Life Habits of the Bivalvia (Mollusca); Geological Society of America: Boulder, CO, USA, 1970; Volume 125, ISBN 0-8137-1125-8. [Google Scholar]
- Alexander, R.R.; Stanton Jr, R.J.; Dodd, J.R. Influence of Sediment Grain Size on the Burrowing of Bivalves: Correlation with Distribution and Stratigraphic Persistence of Selected Neogene Clams. Palaios 1993, 8, 289–303. [Google Scholar] [CrossRef]
- Johnson, E.H. Experimental Tests of Bivalve Shell Shape Reveal Potential Tradeoffs between Mechanical and Behavioral Defenses. Sci. Rep. 2020, 10, 19425. [Google Scholar] [CrossRef] [PubMed]
- Klompmaker, A.A.; Kelley, P.H. Shell Ornamentation as a Likely Exaptation: Evidence from Predatory Drilling on Cenozoic Bivalves. Paleobiology 2015, 41, 187–201. [Google Scholar] [CrossRef]
- Ubukata, T. Theoretical Morphology of Bivalve Shell Sculptures. Paleobiology 2005, 31, 643–655. [Google Scholar] [CrossRef]
- Ye, F.; Bitner, M.A.; Shi, G.R. Variation of Shell Ornamentation with Latitude and Water Depth—A Case Study Using Living Brachiopods. Ecol. Evol. 2023, 13, e10006. [Google Scholar] [CrossRef] [PubMed]
- Goetz, A.J.; Steinmetz, D.R.; Griesshaber, E.; Zaefferer, S.; Raabe, D.; Kelm, K.; Irsen, S.; Sehrbrock, A.; Schmahl, W.W. Interdigitating Biocalcite Dendrites Form a 3-D Jigsaw Structure in Brachiopod Shells. Acta Biomater. 2011, 7, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Lastam, J.; Griesshaber, E.; Yin, X.; Rupp, U.; Sánchez-Almazo, I.; Heß, M.; Walther, P.; Checa, A.; Schmahl, W. The Unique Fibrilar to Platy Nano-and Microstructure of Twinned Rotaliid Foraminiferal Shell Calcite. Sci. Rep. 2023, 13, 2189. [Google Scholar] [CrossRef] [PubMed]
- Verween, A.; Vincx, M.; Degraer, S. The Effect of Temperature and Salinity on the Survival of Mytilopsis leucophaeata Larvae (Mollusca, Bivalvia): The Search for Environmental Limits. J. Exp. Mar. Bio. Ecol. 2007, 348, 111–120. [Google Scholar] [CrossRef]
- Pineda, M.C.; McQuaid, C.D.; Turon, X.; López-Legentil, S.; Ordóñez, V.; Rius, M. Tough Adults, Frail Babies: An Analysis of Stress Sensitivity across Early Life-History Stages of Widely Introduced Marine Invertebrates. PLoS ONE 2012, 7, e46672. [Google Scholar] [CrossRef]
- Gránásy, L.; Rátkai, L.; Zlotnikov, I.; Pusztai, T. Physical Phenomena Governing Mineral Morphogenesis in Molluscan Nacre. Small 2024, 20, 2304183. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Layman, M. The Mechanical Properties of Bivalve (Mollusca) Shell Structures. Palaeontology 1972, 15, 73–87. [Google Scholar]
- Sato, K.; Sasaki, T. Shell Microstructure of Protobranchia (Mollusca: Bivalvia): Diversity, New Microstructures and Systematic Implications. Malacologia 2015, 59, 45–103. [Google Scholar] [CrossRef]
- Prezant, R.S.; Dickinson, G.H.; Chapman, E.J.; Mugno, R.; Rosen, M.N.; Cadmus, M.B. Comparative Assessment of Shell Properties in Eight Species of Cohabiting Unionid Bivalves. Freshw. Mollusk Biol. Conserv. 2022, 25, 27–36. [Google Scholar] [CrossRef]
- Ponder, W.F.; Lindberg, D.R.; Ponder, J.M. Biology and Evolution of the Mollusca, Volume 1; CRC Press: Boca Raton, FL, USA, 2019; ISBN 1-351-11565-0. [Google Scholar]
- Runnegar, B.; Bentley, C. Anatomy, Ecology and Affinities of the Australian Early Cambrian Bivalve Pojetaia Runnegari Jell. J. Paleontol. 1983, 57, 73–92. [Google Scholar]
- Feng, W.; Chen, Z.; Sun, W. Diversification of Skeletal Microstructures of Organisms through the Interval from the Latest Precambrian to the Early Cambrian. Sci. China Ser. D-Earth Sci. 2003, 46, 977–985. [Google Scholar] [CrossRef]
- Vendrasco, M.; Porter, S.; Kouchinsky, A.; Li, G.; Fernandez, C. Shell Microstructures in Early Mollusks. Festivus 2010, 42, 43–54. [Google Scholar]
- Vendrasco, M.J.; Porter, S.M.; Kouchinsky, A.; Li, G.; Fernandez, C.Z. New Data on Molluscs and Their Shell Microstructures from the Middle Cambrian Gowers Formation, Australia. Palaeontology 2010, 53, 97–135. [Google Scholar] [CrossRef]
- Stenzel, H.B. Oysters. In Treatise on Invertebrate Paleontology, Part N, Bivalvia 3; University of Kansas Press: Lawrence, KS, USA, 1971; pp. N953–N1224. [Google Scholar]
- Li, M.; Song, H.; Tian, L.; Woods, A.D.; Dai, X.; Song, H. Lower Triassic Deep Sea Carbonate Precipitates from South Tibet, China. Sediment. Geol. 2018, 376, 60–71. [Google Scholar] [CrossRef]
- Guo, X.; Li, C.; Wang, H.; Xu, Z. Diversity and Evolution of Living Oysters. J. Shellfish. Res. 2018, 37, 755–771. [Google Scholar] [CrossRef]
- Li, C.; Kou, Q.; Zhang, Z.; Hu, L.; Huang, W.; Cui, Z.; Liu, Y.; Ma, P.; Wang, H. Reconstruction of the Evolutionary Biogeography Reveal the Origins and Diversification of Oysters (Bivalvia: Ostreidae). Mol. Phylogenetics Evol. 2021, 164, 107268. [Google Scholar] [CrossRef] [PubMed]
- Currey, J.D.; Taylor, J.D. The Mechanical Behaviour of Some Molluscan Hard Tissues. J. Zool. 1974, 173, 395–406. [Google Scholar] [CrossRef]
- Currey, J.D.; Kohn, A.J. Fracture in the Crossed-Lamellar Structure of Conus Shells. J. Mater. Sci. 1976, 11, 1615–1623. [Google Scholar] [CrossRef]
- Currey, J.D. Shell Form and Strength. In The Mollusca. 11: Form and Function; Wilbur, K.M., Ed.; Academic Press: Orlando, FL, USA, 1988; ISBN 978-0-12-751411-6. [Google Scholar]
- Jackson, A.; Vincent, J.F.; Turner, R. The Mechanical Design of Nacre. Proc. R. Soc. B Biol. Sci. 1988, 234, 415–440. [Google Scholar] [CrossRef]
- Currey, J.D. Biomechanics of Mineralized Skeletons. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1; Carter, J.G., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1990; ISBN 9780875907024. [Google Scholar]
- Currey, J.D. The Design of Mineralised Hard Tissues for Their Mechanical Functions. J. Exp. Biol. 1999, 202, 3285–3294. [Google Scholar] [CrossRef] [PubMed]
- Casella, L.A.; Griesshaber, E.; Yin, X.; Ziegler, A.; Mavromatis, V.; Müller, D.; Ritter, A.-C.; Hippler, D.; Harper, E.M.; Dietzel, M.; et al. Experimental Diagenesis: Insights into Aragonite to Calcite Transformation of Arctica Islandica; Shells by Hydrothermal Treatment. Biogeosciences 2017, 14, 1461–1492. [Google Scholar] [CrossRef]
- Troncoso, O.P.; Torres, F.G.; Arroyo, J.; Gonzales, K.N.; Fernández-García, M.; López, D. Mechanical Properties of Calcite- and Aragonite-Based Structures by Nanoindentation Tests. Bioinspir. Biomim. Nan. 2020, 9, 112–121. [Google Scholar] [CrossRef]
- Lew, A.J.; Stifler, C.A.; Tits, A.; Schmidt, C.A.; Scholl, A.; Cantamessa, A.; Müller, L.; Delaunois, Y.; Compère, P.; Ruffoni, D.; et al. A Molecular-Scale Understanding of Misorientation Toughening in Corals and Seashells. Adv. Mater. 2023, 35, 2300373. [Google Scholar] [CrossRef]
- Gabriel, J. Differing Resistance of Various Mollusc Shell Materials to Simulated Whelk Attack. J. Zool. 1981, 194, 363–369. [Google Scholar] [CrossRef]
- Harper, E.M. Are Calcitic Layers an Effective Adaptation against Shell Dissolution in the Bivalvia? J. Zool. 2000, 251, 179–186. [Google Scholar] [CrossRef]
- Cubillas, P.; Köhler, S.; Prieto, M.; Chaïrat, C.; Oelkers, E.H. Experimental Determination of the Dissolution Rates of Calcite, Aragonite, and Bivalves. Chem. Geol. 2005, 216, 59–77. [Google Scholar] [CrossRef]
- Henrich, R.; Wefer, G. Dissolution of Biogenic Carbonates: Effects of Skeletal Structure. Mar. Geol. 1986, 71, 341–362. [Google Scholar] [CrossRef]
- Avery, R.; Etter, R.J. Microstructural Differences in the Reinforcement of a Gastropod Shell against Predation. Mar. Ecol. Prog. Ser. 2006, 323, 159–170. [Google Scholar] [CrossRef]
- Porter, S.M. Calcite and Aragonite Seas and the de Novo Acquisition of Carbonate Skeletons. Geobiology 2010, 8, 256–277. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.S.; Edie, S.M.; Jablonski, D. Convergence and Contingency in the Evolution of a Specialized Mode of Life: Multiple Origins and High Disparity of Rock-Boring Bivalves. Proc. R. Soc. B. 2023, 290, 20221907. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, J.; Haynert, K.; Wegner, K.M.; Melzner, F. Impact of Seawater Carbonate Chemistry on the Calcification of Marine Bivalves. Biogeosciences 2015, 12, 4209–4220. [Google Scholar] [CrossRef]
- Conci, N.; Vargas, S.; Wörheide, G. The Biology and Evolution of Calcite and Aragonite Mineralization in Octocorallia. Front. Ecol. Evol. 2021, 9, 623774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoerl, S.; Griesshaber, E.; Checa, A.G.; Schmahl, W.W. The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern. Crystals 2024, 14, 649. https://doi.org/10.3390/cryst14070649
Hoerl S, Griesshaber E, Checa AG, Schmahl WW. The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern. Crystals. 2024; 14(7):649. https://doi.org/10.3390/cryst14070649
Chicago/Turabian StyleHoerl, Sebastian, Erika Griesshaber, Antonio G. Checa, and Wolfgang W. Schmahl. 2024. "The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern" Crystals 14, no. 7: 649. https://doi.org/10.3390/cryst14070649
APA StyleHoerl, S., Griesshaber, E., Checa, A. G., & Schmahl, W. W. (2024). The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern. Crystals, 14(7), 649. https://doi.org/10.3390/cryst14070649