Early Stages of Crack Nucleation Mechanism in Fe39Mn20Co20Cr15Si5Al1 High-Entropy Alloy during Stress Corrosion Cracking Phenomenon: Pit Initiation and Growth
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Processing and Microstructural Characterization of the Alloy (As-Received)
2.2. Uniaxial Tensile Test
2.3. Constant Load SCC Experiment
2.4. Microstructural Characterization: Before and after Constant Load SCC Experiment
3. Results
3.1. Microstructural Characterization of the As-Received Alloy
3.2. Early Stages of Crack Formation: Pit Initiation and Growth
3.2.1. Constant Load Selection
3.2.2. Microstructural Characterization during Interruption
4. Discussion
Pit Nucleation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hines, J.G. On the propagation of stress-corrosion cracks in metals. Corros. Sci. 1961, 1, 21–48. [Google Scholar] [CrossRef]
- Meletis, E.I.; Hochman, R.F. A review of the crystallography of stress corrosion cracking. Corros. Sci. 1986, 26, 63–90. [Google Scholar] [CrossRef]
- McCafferty, E. Introduction to Corrosion Science; Springer: New York, NY, USA, 2010. [Google Scholar]
- Atrens, A.; Baroux, B.; Mantel, M. The secondary passive film for type 304 stainless steel in 0.5 M H2SO4. J. Electrochem. Soc. 1997, 144, 3697–3704. [Google Scholar] [CrossRef]
- Logan, H.L. Film-rupture mechanism of stress corrosion. J. Res. Natl. Bur. Stand. 1952, 48, 99–105. [Google Scholar] [CrossRef]
- Popov, B.N. Chapter 9—Stress Corrosion Cracking. In Corrosion Engineering; Elsevier: Amsterdam, The Netherland, 2015; pp. 365–450. [Google Scholar]
- Ford, F.P. The crack-tip system and its relevance to the prediction of cracking in aqueous environments. Environ. Induc. Crack. Met. 1990, 10, 139–162. [Google Scholar]
- Jones, R.H. Stress corrosion cracking. In ASM Handbook, Volume 13A—Corrosion: Fundamentals, Testing, and Protection; ASM International: Richland, WA, USA, 2003; pp. 346–366. [Google Scholar]
- Alyousif, O.M.; Nishimura, R. On the stress corrosion cracking and hydrogen embrittlement behavior of austenitic stainless steels in boiling saturated magnesium chloride solutions. Int. J. Corros. 2012, 1, 462945. [Google Scholar] [CrossRef]
- Forty, A.J.; Humble, P. The influence of surface tarnish on the stress-corrosion of α-brass. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1963, 8, 247–264. [Google Scholar] [CrossRef]
- Engseth, P.; Scully, J.C. Repassivation studies on an austenitic stainless steel in chloride solutions. Corros. Sci. 1975, 15, 505–519. [Google Scholar] [CrossRef]
- Braun, R. Environmentally assisted cracking of alloy 7050-T7451 exposed to aqueous chloride solutions. Metall. Mater. Trans. A 2016, 47, 1367–1377. [Google Scholar] [CrossRef]
- Hua, T.S.; Song, R.G.; Zong, Y.; Cai, S.W.; Wang, C. Effect of solution pH on stress corrosion and electrochemical behaviour of aluminum alloy with micro-arc oxidation coating. Mater. Res. Express 2019, 6, 096441. [Google Scholar] [CrossRef]
- Cabrini, M.; Bocchi, S.; Urso, G.; Giardini, C.; Lorenzi, S.; Testa, C.; Pastore, T. Stress corrosion cracking of friction stir-welded AA-2024 T3 alloy. Materials 2020, 13, 2610. [Google Scholar] [CrossRef]
- Tang, Z.C.; Xu, W.; Zhao, D.Y.; Zhang, B. Improving the strength and SCC resistance of an Al-5Mg-3Zn alloy with low-angle grain boundary structure. J. Mater. Sci. Technol. 2023, 161, 63–73. [Google Scholar] [CrossRef]
- Ujjwal, K.; Al-Saadi, S.; Das, A.K.; Raman, R.K.S. Corrosion and stress corrosion cracking characteristics of 4043 aluminium alloy fabricated through directed energy deposition process. J. Alloys Compd. 2023, 976, 173154. [Google Scholar] [CrossRef]
- Freixes, M.L.; Zhou, X.; Aymerich-Armengol, R.; Vega-Paredes, M.; Peguet, L.; Warner, T.; Gault, B. Crack arrest markings in stress corrosion cracking of 7xxx aluminium alloys: Insights into active hydrogen embrittlement mechanisms. Scr. Mater. 2023, 237, 115690. [Google Scholar] [CrossRef]
- Rodrigues, P.S.; Zenóbio, I.R.; Da Silva, T.I.; Fernandes, C.Q.C.; De Sousa, T.G.; De Castro, J.A.; Da Fonseca, G.S.; Huguenin, J.A.O.; Ferreira, E.A. Effect of aging on corrosion resistance of AZ31 magnesium alloy. J. Mater. Eng. Perform. 2023, 33, 3413–3425. [Google Scholar] [CrossRef]
- Jia, H.; Li, J.; Li, Y.; Wang, M.; Luo, S.; Zhang, Z. Mechanical properties and stress corrosion cracking behavior of a novel Mg-6Zn-1Y-0.5Cu-0.5Zr alloy. J. Alloys Compd. 2022, 911, 164995. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, B.; Chen, H.; Liu, Z.; Dai, W.; Yang, X.; Yang, W.; Deng, Y.; Li, X. Stress corrosion cracking behavior and mechanism of 2205 duplex stainless steel under applied polarization potentials. Corros. Sci. 2024, 231, 111978. [Google Scholar] [CrossRef]
- Ehrnstén, U.; Andresen, P.L.; Que, Z. A review of stress corrosion cracking of austenitic stainless steels in PWR primary water. J. Nucl. Mater. 2023, 588, 154815. [Google Scholar] [CrossRef]
- Pal, S. Role of residual stresses induced by U-bending on stress corrosion cracking susceptibility of F304 stainless steel. Adv. Mater. Process. Technol. 2023, 10, 315–328. [Google Scholar] [CrossRef]
- Martin, U.; Birbilis, N.; Macdonald, D.D.; Bastidas, D.M. Pit-to-crack mechanisms of 316LN stainless steel reinforcement in alkaline solution influenced by strain induced martensite. NPJ Mater. Degrad. 2023, 7, 88. [Google Scholar] [CrossRef]
- Joseph, S.; Kontis, P.; Chang, Y.; Shi, Y.; Raabe, D.; Gault, B.; Dye, D. A cracking oxygen story: A new view of stress corrosion cracking in titanium alloys. Acta Mater. 2022, 227, 117687. [Google Scholar] [CrossRef]
- Chen, T.; Zeng, Z.; Gao, H.; Liu, C.; Liu, Z.; Sun, Z.; Li, X. Influence of AC/DC on stress corrosion cracking of Ti-6Al-3Nb-2Zr-1Mo alloy in simulated marine solution. Int. J. Hydrog. Energy 2023, 55, 177–188. [Google Scholar] [CrossRef]
- Cao, S.; Zhu, S.; Samuel Lim, C.V.; Zhou, X.; Chen, X.; Hinton, B.R.W.; Boyer, R.R.; Williams, J.C.; Wu, X. The mechanism of aqueous stress-corrosion cracking of α + β titanium alloys. Corros. Sci. 2017, 125, 29–39. [Google Scholar] [CrossRef]
- Chiani, M.; Atapour, M. A study on the stress corrosion cracking susceptibility of friction stir welded Ti-6Al-4V alloy joints. Mater. Res. Express 2019, 6, 096598. [Google Scholar] [CrossRef]
- Moss, T.; Kuang, W.; Was, G.S. Stress corrosion crack initiation in Alloy 690 in high temperature water. Curr. Opin. Solid State Mater. Sci. 2018, 22, 16–25. [Google Scholar] [CrossRef]
- Telang, A.; Gill, A.S.; Teysseyre, S.; Mannava, S.R.; Qian, D.; Vasudevan, V.K. Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution. Corros. Sci. 2015, 90, 434–444. [Google Scholar] [CrossRef]
- Li, D.; Li, K.; Gao, J.; Liu, Y.; Qin, C.; Li, J.; Li, Y.; Cao, W.; Zhai, Y.; Huang, G. Stress corrosion cracking of copper–nickel alloys: A review. Coatings 2023, 13, 1690. [Google Scholar] [CrossRef]
- Klapper, H.S.; Zajec, B.; Heyn, A.; Legat, A. Elucidating nucleation stages of transgranular stress corrosion cracking in austenitic stainless steel by in situ electrochemical and optical methods. J. Electrochem. Soc. 2019, 166, C3326–C3335. [Google Scholar] [CrossRef]
- Calabrese, L.; Bonaccorsi, L.; Galeano, M.; Proverbio, E.; Di Pietro, D.; Cappuccini, F. Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques. Corros. Sci. 2015, 98, 573–584. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Tsai, M.; Yeh, J. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Tong, C.; Chen, M.; Yeh, J.; Lin, S.; Chen, S.; Shun, T.; Chang, S. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 1263–1271. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Chuang, M.; Tsai, M.; Wang, W.; Lin, S.; Yeh, J. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Hsu, C.; Juan, C.; Wang, W.; Sheu, T.; Yeh, J.; Chen, S. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng. A 2011, 528, 3581–3588. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Yang, S.; Luo, Q.; Jin, Y.; Xie, W.; Zhang, L.; Li, Q. Light-weight refractory high-entropy alloys: A comprehensive review. J. Mater. Sci. Technol. 2023, 151, 41–65. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Hsu, Y.; Chiang, W.; Wu, J. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 2005, 92, 112–117. [Google Scholar] [CrossRef]
- Ayyagari, A.; Salloom, R.; Arora, H.S.; Mukherjee, S. Accelerated corrosion of high entropy alloys under tensile stress. arXiv 2021, arXiv:2106.03690. [Google Scholar]
- Varshney, P.; Mishra, R.S.; Kumar, N. Stress corrosion cracking of TRIP Fe39Mn20Co20Cr15Si5Al1 (at.%) high entropy alloy. In TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings; Springer: Cham, Switzerland, 2021; pp. 742–750. [Google Scholar]
- Varshney, P.; Kumar, N. Stress corrosion cracking study of Fe39Mn20Co20Cr15Si5Al1 (at.%) compositionally complex alloy in 3.5 wt% NaCl salt solution. In TMS 2022 151th Annual Meeting & Exhibition Supplemental Proceedings; Springer International Publishing: Cham, Switzerland, 2022; pp. 1138–1145. [Google Scholar]
- Varshney, P.; Kumar, N. Investigating the susceptibility of Fe39Mn20Co20Cr15Si5Al1 high entropy alloy to stress corrosion cracking in a 3.5 wt.% NaCl environment. Corros. Sci. 2023, 222, 111422. [Google Scholar] [CrossRef]
- Varshney, P.; Mishra, R.S.; Kumar, N. Understanding the nature of passivation film formed during corrosion of Fe39Mn20Co20Cr15Si5Al1 high entropy alloy in 3.5 wt% NaCl solution. J. Alloys Compd. 2022, 904, 164100. [Google Scholar] [CrossRef]
- Nene, S.S.; Frank, M.; Liu, K.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Extremely high strength and work hardening ability in a metastable high entropy alloy. Sci. Rep. 2018, 8, 9920–9928. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.S.; Nene, S.S. Some unique aspects of mechanical behavior of metastable transformative high entropy alloys. Metall. Mater. Trans. A 2021, 52, 889–896. [Google Scholar] [CrossRef]
- Polatidis, E.; Shukla, S.; Čapek, J.; Van Petegem, S.; Casati, N.; Mishra, R.S. Unveiling the interplay of deformation mechanisms in a metastable high entropy alloy with tuned composition using synchrotron X-ray diffraction. Mater. Today Commun. 2022, 30, 103155. [Google Scholar] [CrossRef]
- Sinha, S.; Nene, S.S.; Frank, M.; Liu, K.; Agrawal, P.; Mishra, R. On the evolving nature of c/a ratio in a hexagonal close-packed epsilon martensite phase in transformative high entropy alloys. Sci. Rep. 2019, 9, 13185. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.T.; Zeng, Y.; Pang, X.; Luo, J.L. Effects of hydrogen and tensile stress on passivity of carbon steel. Corros. Eng. Sci. Technol. 2015, 50, 186–190. [Google Scholar] [CrossRef]
- Varshney, P.; Chhangani, S.; Prasad, M.J.N.V.; Pati, S.; Gollapudi, S. Effect of grain boundary relaxation on the corrosion behaviour of nanocrystalline Ni-P alloy. J. Alloys Compd. 2020, 830, 154616. [Google Scholar] [CrossRef]
- Tian, W.; Du, N.; Li, S.; Chen, S.; Wu, Q. Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution. Corros. Sci. 2014, 85, 372–379. [Google Scholar] [CrossRef]
- Wu, K.; Byeon, J. Morphological estimation of pitting corrosion on vertically positioned 304 stainless steel using acoustic-emission duration parameter. Corros. Sci. 2019, 148, 331–337. [Google Scholar] [CrossRef]
- Scully, J.C. The interaction of strain-rate and repassivation rate in stress corrosion crack propagation. Corros. Sci. 1980, 20, 997. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Bhuyan, P.; Mandal, S. Influence of the individual microstructural features on pitting corrosion in type 304 austenitic stainless steel. Corros. Sci. 2019, 158, 108091. [Google Scholar] [CrossRef]
- Kumar, N.; Fusco, M.; Komarasamy, M.; Mishra, R.S.; Bourham, M.; Murthy, K.L. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy. J. Nucl. Mater. 2017, 495, 154–163. [Google Scholar] [CrossRef]
- Filippova, V.P.; Kunavin, S.A.; Pugachev, M.S. Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances. Inorg. Mater. Appl. Res. 2015, 6, 1–4. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, X.; Xu, Y.; Shi, R.; Lu, X.; Zhang, L.; Zhang, J.; Chen, D. Corrosion behavior of deformed low-nickel stainless steel in groundwater solution. Eng. Fail. Anal. 2019, 98, 49–57. [Google Scholar] [CrossRef]
- Pistorius, P.C.; Burstein, G.T. Metastable pitting corrosion of stainless steel and the transition to stability, Philosophical Transactions of the Royal Society of London. Ser. A Phys. Sci. Eng. 1992, 341, 531–559. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varshney, P.; Kumar, N. Early Stages of Crack Nucleation Mechanism in Fe39Mn20Co20Cr15Si5Al1 High-Entropy Alloy during Stress Corrosion Cracking Phenomenon: Pit Initiation and Growth. Crystals 2024, 14, 719. https://doi.org/10.3390/cryst14080719
Varshney P, Kumar N. Early Stages of Crack Nucleation Mechanism in Fe39Mn20Co20Cr15Si5Al1 High-Entropy Alloy during Stress Corrosion Cracking Phenomenon: Pit Initiation and Growth. Crystals. 2024; 14(8):719. https://doi.org/10.3390/cryst14080719
Chicago/Turabian StyleVarshney, Pranshul, and Nilesh Kumar. 2024. "Early Stages of Crack Nucleation Mechanism in Fe39Mn20Co20Cr15Si5Al1 High-Entropy Alloy during Stress Corrosion Cracking Phenomenon: Pit Initiation and Growth" Crystals 14, no. 8: 719. https://doi.org/10.3390/cryst14080719
APA StyleVarshney, P., & Kumar, N. (2024). Early Stages of Crack Nucleation Mechanism in Fe39Mn20Co20Cr15Si5Al1 High-Entropy Alloy during Stress Corrosion Cracking Phenomenon: Pit Initiation and Growth. Crystals, 14(8), 719. https://doi.org/10.3390/cryst14080719