A High–Throughput Molecular Dynamics Study for the Modeling of Cryogenic Solid Formation
Abstract
:1. Introduction
2. Cryogenic Solid Formation
- The feeding gas (D2, Ne, or Ar) is introduced into the pipe-gun tube at sub-atmospheric fill pressures.
- A section of the pipe-gun tube, i.e., the active section, is cooled and maintained at temperatures of several degrees below the triple point. This is achieved by means of the thermal contact between the active section of the tube and a metal plaque (oxygen-free copper is typically used due to its high conductivity) that is actively cooled by a cryogenic refrigerator or flowing liquid helium.
- The cooling process leads to the de-sublimation of the fill gas and the growth of solid material on the active section. Good temperature and pressure control during the formation of cryogenic solid is a key factor in determining the final strength of the pellet. Each barrel line is indeed equipped with a pressure controller/flow meter combination that is used to control the freezing pressure and to measure/integrate the mass flow until the desired amount of gas is frozen in each barrel. To ensure that the gas freezes only in the well-defined center cell, upstream and downstream heaters are often used on a single-barrel pipe gun to control the temperature gradients on each side of the zone.
- Before firing, the master heater is typically turned off, and the pellets cool to the minimum possible temperature to have pellets to better withstand the huge stress during acceleration (one key feature is to have pellets as strong as possible that can survive high acceleration forces, especially for operations with two-stage light gas guns in which these pellets must be accelerated up to few km/s). That temperature is determined by the power of the cryogenic refrigerator and the thermal design of the cryostat and surrounding apparatuses.
- The pellet is finally fired by means of rear propellant gas. High acceleration forces are required to overcome the pellet breakaway pressure. This is the value at which the pellet will instantaneously dislodge because the force exerted on the rear of the pellet exceeds the amount required to overcome the shear stress at the outer surface of the cylindrical pellet. In particular, high breakaway pressures are necessary in the case of Ne and Ar pellets. Propulsion devices must be designed for proper shaping of the propellant pressure pulse to improve pellet acceleration.
3. Computational Details
4. Results and Discussion
4.1. T-P Solid–Gas Curves
4.2. Surface Characterization
- For molecular deuterium:
- For neon:
- For argon:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Combs, S.K.; Milora, S.L.; Foust, C.R. Simple pipe gun for hydrogen pellet injection. Rev. Sci. Instrum. 1986, 57, 2636–2637. [Google Scholar] [CrossRef]
- Sørensen, H.; Nordskov, A.; Sass, B.; Visler, T. Simplified pipe gun. Rev. Sci. Instrum. 1987, 58, 2336. [Google Scholar] [CrossRef]
- Reggiori, A.; Carlevaro, R.; Riva, G.; Daminelli, G.B.; Scaramuzzi, F.; Frattolillo, A.; Martinis, L.; Cardoni, P.; Mori, L. High-speed pellet injection with a two-stage pneumatic gun. J. Vac. Sci. Technol. A 1988, 6, 2556–2558. [Google Scholar] [CrossRef]
- Lang, P.T.; Büchl, K.; Kaufmann, M.; Lang, R.S.; Mertens, V.; Müller, H.W.; Neuhauser, J.; Upgrade, A.; Teams, N. High-Efficiency Plasma Refuelling by Pellet Injection from the Magnetic High-Field Side into ASDEX Upgrade. Phys. Rev. Lett. 1997, 79, 1487–1490. [Google Scholar] [CrossRef]
- Viniar, I.; Reznichenko, P.; Lukin, A.; Umov, A.; Sudo, S. Hydrogen-encapsulated impurity pellet injector for plasma diagnostics. Rev. Sci. Instrum. 2001, 72, 2575–2578. [Google Scholar] [CrossRef]
- Pautasso, G.; Tichmann, C.; Egorov, S.; Zehetbauer, T.; Gruber, O.; Maraschek, M.; Mast, K.-F.; Mertens, V.; Perchermeier, I.; Raupp, G.; et al. On-line prediction and mitigation of disruptions in ASDEX Upgrade. Nucl. Fusion 2002, 42, 100–108. [Google Scholar] [CrossRef]
- Lorenz, A.; Combs, S.; Reich, M.; Lang, P.; Watson, M.; Wilson, D.; Wittmann, C. Mass transfer in long pellet guiding systems at ASDEX upgrade and JET. Fusion Eng. Des. 2003, 69, 15–20. [Google Scholar] [CrossRef]
- Cannas, B.; Fanni, A.; Marongiu, E.; Sonato, P. Disruption forecasting at JET using neural networks. Nucl. Fusion 2004, 44, 68–76. [Google Scholar] [CrossRef]
- Combs, S.; Baylor, L.; Caughman, J.; Fehling, D.; Foust, C.; Jernigan, T.; Maruyama, S.; McGill, J.; Rasmussen, D.; Ridenour, J.; et al. Pellet delivery and survivability through curved guide tubes for fusion fueling and its implications for ITER. Fusion Eng. Des. 2005, 75–79, 691–696. [Google Scholar] [CrossRef]
- Pégourié, B.; Waller, V.; Dumont, R.J.; Eriksson, L.-G.; Garzotti, L.; Géraud, A.; Imbeaux, F. Modelling of pellet ablation in additionally heated plasmas. Plasma Phys. Control. Fusion 2005, 47, 17–35. [Google Scholar] [CrossRef]
- Baylor, L.; Jernigan, T.; Parks, P.; Antar, G.; Brooks, N.; Combs, S.; Fehling, D.; Foust, C.; Houlberg, W.; Schmidt, G. Comparison of deuterium pellet injection from different locations on the DIII-D tokamak. Nucl. Fusion 2007, 47, 1598–1606. [Google Scholar] [CrossRef]
- Pégourié, B.; Waller, V.; Nehme, H.; Garzotti, L.; Géraud, A. Homogenization of the pellet ablated material in tokamaks taking into account the ∇B-induced drift. Nucl. Fusion 2006, 47, 44–56. [Google Scholar] [CrossRef]
- Baylor, L.; Combs, S.; Foust, C.; Jernigan, T.; Meitner, S.; Parks, P.; Caughman, J.; Fehling, D.; Maruyama, S.; Qualls, A.; et al. Pellet fuelling, ELM pacing and disruption mitigation technology development for ITER. Nucl. Fusion 2009, 49, 085013. [Google Scholar] [CrossRef]
- Combs, S.K.; Meitner, S.J.; Baylor, L.R.; Caughman, J.B.; Commaux, N.; Fehling, D.T.; Foust, C.R.; Jernigan, T.C.; McGill, J.M.; Parks, P.B.; et al. Alternative techniques for injecting massive quantities of has for plasma-disruption mitigation. IEEE Trans. Plasma Sci. 2010, 38, 400. [Google Scholar] [CrossRef]
- Lang, P.T.; Day, C.; Fable, E.; Igitkhanov, Y.; Köchl, F.; Mooney, R.; Pegourie, B.; Ploeckl, B.; Wenninger, R.; Zohm, H. Considerations on the DEMO pellet fueling system. Fusion Eng. Des. 2015, 96–97, 123–128. [Google Scholar] [CrossRef]
- Pégourié, B.; Day, C.; Frattolillo, A.; Koechl, F.; Lang, P.T. Physical constraints on the design of the DEMO pellet fueling system. In Proceedings of the 43rd EPS Conference on Plasma Physics, Leuven, Bergium, 4–8 July 2016; p. 4.076. [Google Scholar]
- Frattolillo, A.; Bombarda, F.; Day, C.; Lang, P.; Migliori, S.; Pégourié, B. An innovative approach for DEMO core fuelling by inboard injection of high-speed pellets. Fusion Eng. Des. 2017, 124, 846–849. [Google Scholar] [CrossRef]
- Meitner, S.; Baylor, L.; Commaux, N.; Shiraki, D.; Combs, S.; Bjorholm, T.; Ha, T.; McGinnis, W. Design and Commissioning of a Three-Barrel Shattered Pellet Injector for DIII-D Disruption Mitigation Studies. Fusion Sci. Technol. 2017, 72, 318. [Google Scholar] [CrossRef]
- Frattolillo, A.; Baylor, L.R.; Bombarda, F.; Combs, S.K.; Day, C.; Lang, P.T.; Migliori, S.; Pegourie, B.; Ploeckl, B. Core Fueling of DEMO by Direct Line Injection of High-Speed Pellets From the HFS. IEEE Trans. Plasma Sci. 2018, 46, 1429–1435. [Google Scholar] [CrossRef]
- Combs, S.K.; Baylor, L.R. Pellet-Injector Technology—Brief History and Key Developments in the Last 25 Years. Fusion Sci. Technol. 2017, 73, 493–518. [Google Scholar] [CrossRef]
- Baylor, L.R.; Meitner, S.J.; Gebhart, T.; Caughman, J.B.O.; Herfindal, J.L.; Shiraki, D.; Youchison, D.L. Shattered pellet injection technology design and characterization for disruption mitigation experiments. Nucl. Fusion 2019, 59, 066008. [Google Scholar] [CrossRef]
- Meitner, S.J.; Baylor, L.R.; Gebhart, T.E.; Harris, J.H.; Mcginnis, W.D.; Bjorholm, T.P.; Logan, K.G. Design of a Continuous Pellet Fueling System for Wendelstein 7-X. IEEE Trans. Plasma Sci. 2019, 48, 1585–1590. [Google Scholar] [CrossRef]
- Gebhart, T.E.; Ghiozzi, A.G.; Velez, D.A.; Baylor, L.R.; Chilen, C.; Meitner, S.J. Shear Strength and Release of Large Cryogenic Pellets from the Barrel of a Shattered Pellet Injector for Disruption Mitigation. Fusion Sci. Technol. 2021, 77, 721–727. [Google Scholar] [CrossRef]
- Baylor, L.R.; Meitner, S.J.; Gebhart, T.E.; Lang, P.T.; Ploeckl, B. Issues in Formation of Cryogenic Pellets for Fusion Applications. Fusion Sci. Technol. 2021, 77, 728–737. [Google Scholar] [CrossRef]
- Meitner, S.J.; Baylor, L.R.; McGinnis, W.D. R&D Extruder Developments for the Wendelstein 7-X Continuous Pellet Fueling System. IEEE Trans. Plasma Sci. 2022, 50, 1957–1961. [Google Scholar]
- Lang, P.T.; Bosman, T.; Day, C.; Giegerich, T.; Kircher, M.; Kudlacek, O.; Phillips, G.; Ploeckl, B.; Sieglin, B.; Tretter, J.; et al. Concept for a multi-purpose EU-DEMO pellet launching system. Fusion Eng. Des. 2022, 185, 113333. [Google Scholar] [CrossRef]
- Ohshima, S.; Suzuki, T.; Matoike, R.; Motojima, G.; Kado, S.; Mori, A.; Miyashita, A.; Kobayashi, S.; Minami, T.; Iwata, A.; et al. Three-dimensional dynamics of fluctuations appearing during pellet ablation process around a pellet in a fusion plasma experiment. Sci. Rep. 2022, 12, 14204. [Google Scholar] [CrossRef]
- Zhang, J.; Iwamoto, A.; Shigemori, K.; Hara, M.; Yamanoi, K. Refractive index measurement of hydrogen isotopologue mixture and applicability for homogeneity of hydrogen solid at cryogenic temperature in fusion fuel system. Nucl. Fusion 2023, 63, 076020. [Google Scholar] [CrossRef]
- Gebhart, T.E.; Baylor, L.R.; Dibon, M.; Ericson, M.N.; Felske, E.J.; Frank, S.; Gardner, W.; Ghiozzi, A.G.; Jachmich, S.; Kruezi, U.; et al. Impact of breech geometry and propellant flow on the release of large pellets for the ITER disruption mitigation system. Nucl. Fusion 2024, 64, 036021. [Google Scholar] [CrossRef]
- Mailloux, J.; Abid, N.; Abraham, K.; Abreu, P.; Adabonyan, O.; Adrich, P.; Afanasev, V.; Afzal, M.; Ahlgren, T.; Aho-Mantila, L.; et al. Overview of JET results for optimising ITER operation. Nucl. Fusion 2022, 62, 042026. [Google Scholar] [CrossRef]
- Pavese, F.; Barbero, C. The triple point of pure normal-deuterium. Cryogenics 1979, 19, 255–260. [Google Scholar] [CrossRef]
- Preston-Thomas, H. The International Temperature Scale of 1990 (ITS-90). Metrologia 1990, 27, 3. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tegeler, C.; Span, R.; Wagner, W. A New Equation of State for Argon Covering the Fluid Region for Temperatures from the Melting Line to 700 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 1999, 28, 779. [Google Scholar] [CrossRef]
- Giusepponi, S.; Buonocore, F.; Celino, M.; Pasini, M.L.; Frattolillo, A.; Migliori, S. Study of Solid Molecular Deuterium D2 Growth under Gas Pressure. Fusion Eng. Des. 2022, 182, 113252. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 2022, 271, 10817. [Google Scholar] [CrossRef]
- Available online: http://lammps.sandia.gov (accessed on 30 April 2024).
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 1997. [Google Scholar]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Haile, J.M. Molecular Dynamics Simulation: Elementary Methods; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Leach, A. Molecular Modelling: Principles and Applications, 2nd ed.; Pren-tice Hall: Harlow, UK, 2001. [Google Scholar]
- Rapaport, D.C. The Art of Molecular Dynamics Simulation; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Schlick, T. Molecular Modeling and Simulation; Springer: Berlin, Germany, 2002. [Google Scholar]
- Zepeda-Ruiz, L.A.; Sadigh, B.; Shin, S.J.; Kozioziemski, B.J.; Chernov, A.A. Effect of wetting on nucleation and growth of D2 in confinement. J. Chem. Phys. 2018, 148, 134708. [Google Scholar] [CrossRef] [PubMed]
- Bellissent-Funel, M.C.; Buontempo, U.; Filabozzi, A.; Petrillo, C.; Ricci, F.P. Neutron diffraction of liquid neon and xenon along the coexistence line. Phys. Rev. B 1992, 45, 4605–4613. [Google Scholar] [CrossRef]
- Mick, J.R.; Barhaghi, M.S.; Jackman, B.; Rushaidat, K.; Schwiebert, L.; Potoff, J.J. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes. J. Chem. Phys. 2015, 143, 114504. [Google Scholar] [CrossRef]
- Sadus, R.J. Two-body intermolecular potentials from second virial coefficient properties. J. Chem. Phys. 2019, 150, 024503. [Google Scholar] [CrossRef] [PubMed]
- Deiters, U.K.; Sadus, R.J. Two-body interatomic potentials for He, Ne, Ar, Kr, and Xe from ab initio data. J. Chem. Phys. 2019, 150, 134504. [Google Scholar] [CrossRef]
- Sadus, R.J. Molecular simulation of orthobaric isochoric heat capacities near the critical point. Phys. Rev. E 2019, 99, 012139. [Google Scholar] [CrossRef]
- Deiters, U.K.; Sadus, R.J. Fully a priori prediction of the vapor-liquid equilibria of Ar, Kr, and Xe from ab initio two-body plus three-body interatomic potentials. J. Chem. Phys. 2019, 151, 034509. [Google Scholar] [CrossRef]
- Sadus, R.J. Combining intermolecular potentials for the prediction of fluid properties: Two-body and three-body interactions. J. Chem. Phys. 2020, 153, 214509. [Google Scholar] [CrossRef]
- Sadus, R.J. Effect of the range of particle cohesion on the phase behavior and thermodynamic properties of fluids. J. Chem. Phys. 2020, 153, 244502. [Google Scholar] [CrossRef]
- Deiters, U.K.; Sadus, R.J. Interatomic Interactions Responsible for the Solid–Liquid and Vapor–Liquid Phase Equilibria of Neon. J. Phys. Chem. B 2021, 125, 8522–8531. [Google Scholar] [CrossRef]
- Deiters, U.K.; Sadus, R.J. Accurate determination of solid–liquid equilibria by molecular simulation: Behavior of Ne, Ar, Kr, and Xe from low to high pressures. J. Chem. Phys. 2022, 157, 204504. [Google Scholar] [CrossRef]
- Berendsen, H.J.; Postma, J.V.; Van Gunsteren, W.F.; DiNola, A.R.H.J.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684. [Google Scholar] [CrossRef]
- Curzon, E.; Mascall, A.J. The crystal structures of solid hydrogen and solid deuterium in thin films. Brit. J. Appl. Phys. 1965, 16, 1301. [Google Scholar] [CrossRef]
- Pollack, G.L. The Solid State of Rare Gases. Rev. Mod. Phys. 1964, 36, 748–791. [Google Scholar] [CrossRef]
- Barrett, S.; Meyer, L. X-ray Diffraction Study of Solid Argon. J. Chem. Phys. 1964, 41, 1078. [Google Scholar] [CrossRef]
- Stukowski, A. Computational Analysis Methods in Atomistic Modeling of Crystals. JOM 2014, 66, 399–407. [Google Scholar] [CrossRef]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Iannone, F.; Ambrosino, F.; Bracco, G.; De Rosa, M.; Funel, A.; Guarnieri, G.; Migliori, S.; Palombi, F.; Ponti, G.; Santomauro, G.; et al. CRESCO ENEA HPC clusters: A working example of a multifabric GPFS Spectrum Scale layout. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 1051–1052. [Google Scholar]
- Mariano, A.; D’amato, G.; Ambrosino, F.; Aprea, G.; Buonocore, F.; Celino, M.; Colavincenzo, A.; Fina, M.; Funel, A.; Giusepponi, S.; et al. Fast Access to Remote Objects 2.0 a renewed gateway to ENEAGRID distributed computing resources. Futur. Gener. Comput. Syst. 2019, 94, 920–928. [Google Scholar] [CrossRef]
Element | Triple Point P (mbar) T (K) | Solid P (mbar) T Range (K) | Slab Px = Py (mbar) T Range (K) | Gas P (mbar) T Range (K) | Two-Phase Pz (mbar) T Range (K) |
---|---|---|---|---|---|
D2 | 171.3 18.71 | 0 0–30 | 0 0–30 | 5, 10, 15, 20, 25 30–5 | 5, 10, 15, 20, 25 5–20 |
Ne | 433.70 24.556 | 0 0–40 | 0 0–40 | 10, 25, 50, 100 45–5 | 10, 25, 50, 100 8–22 |
Ar | 688.91 80.806 | 0 0–90 | 0 0–90 | 25, 50, 100, 250, 500 100–15 | 25, 50, 100, 250, 500 20–80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giusepponi, S.; Buonocore, F.; Celino, M.; Iaboni, A.; Frattolillo, A.; Migliori, S. A High–Throughput Molecular Dynamics Study for the Modeling of Cryogenic Solid Formation. Crystals 2024, 14, 741. https://doi.org/10.3390/cryst14080741
Giusepponi S, Buonocore F, Celino M, Iaboni A, Frattolillo A, Migliori S. A High–Throughput Molecular Dynamics Study for the Modeling of Cryogenic Solid Formation. Crystals. 2024; 14(8):741. https://doi.org/10.3390/cryst14080741
Chicago/Turabian StyleGiusepponi, Simone, Francesco Buonocore, Massimo Celino, Andrea Iaboni, Antonio Frattolillo, and Silvio Migliori. 2024. "A High–Throughput Molecular Dynamics Study for the Modeling of Cryogenic Solid Formation" Crystals 14, no. 8: 741. https://doi.org/10.3390/cryst14080741
APA StyleGiusepponi, S., Buonocore, F., Celino, M., Iaboni, A., Frattolillo, A., & Migliori, S. (2024). A High–Throughput Molecular Dynamics Study for the Modeling of Cryogenic Solid Formation. Crystals, 14(8), 741. https://doi.org/10.3390/cryst14080741