Multi-Objective Optimization for the Forming Quality of a CeO2/Al6061 Alloy as an Aluminum–Air Battery Anode Manufactured via Selective Laser Melting
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Equipment
2.2. Experimental Methods
2.2.1. Response Surface Methodology (RSM) Design
2.2.2. Self-Corrosion Rate
2.2.3. Electrochemical Test
2.2.4. Discharge Measurement
3. Results and Discussion
3.1. Regression Analysis of Forming Quality
3.2. Analysis of the Interactive Influence
3.3. Optimization of Multi-Objective Forming Process Parameters
4. Conclusions
- (1)
- In the construction of the regression prediction model for anode forming quality, the p-values of all three are less than 0.0001, far less than 0.05, indicating that the established model is reliable. The interaction between laser power and scanning speed has a significant impact on the forming quality, while the interaction between laser scanning speed and scan spacing has a small impact on the forming quality.
- (2)
- The originally set laser process parameter range was significantly reduced, resulting in the optimal process parameter range for composite forming quality and performance being laser power of 265–285 W, scanning speed of 985–1025 mm/s, and scanning spacing of 0.116–0.140 mm.
- (3)
- According to the optimization results, three sets of process parameter combinations were randomly selected for experimental verification, with errors all within 3.0%. The second-order mathematical prediction model and multi-objective optimization process parameter solution set regarding the multiple factors and responses of corrosion potential, self-corrosion rate, and discharge voltage are reliable.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Tong, Y.; Liu, Y.; Li, X.; Chen, B.; Liu, F.; Zhou, B.; Liu, Y.; Qin, Z.; Wu, Z. Study on thermal effect of aluminum-air battery. Nanomaterials 2023, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Lv, C.N.; Zhu, Y.X.; Kuang, J.L.; Wang, H.Y.; Li, Y.X.; Tang, Y.G. Challenges and strategies of aluminum anodes for high-performance aluminum-air batteries. Small Methods 2024, 8, 2300911. [Google Scholar] [CrossRef]
- Tan, W.C.; Saw, L.H.; Yew, M.C.; Sun, D.Y.; Chen, W.H. High performance aluminum-air battery for sustainable power generation. Int. J. Hydrogen Energy 2023, 48, 10438–10451. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, H.S.; Fu, L.; Wu, P.F.; Li, Y.H.; Li, Y.X.; Sun, D.; Wang, H.Y.; Tang, Y.G. Electrolytes for aluminum-air batteries: Advances, challenges, and applications. Sustain. Energ. Fuels 2023, 7, 1353–1370. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, Y.; Li, Y.F.; Yang, K.; Lu, W.Y.; Peng, K.; Tian, Z.L. Investigation of commercial aluminum alloys as anode materials for alkaline aluminum-air batteries. Sustain. Energ. Fuels 2023, 7, 300–309. [Google Scholar] [CrossRef]
- Lv, C.N.; Zhang, Y.X.; Li, Y.X.; Zhu, Y.X.; Kuang, J.L.; Tang, Y.G. Regulating solvation and interface chemistry enables advanced aluminum-air batteries. Chem. Commun. 2023, 59, 2588–2591. [Google Scholar] [CrossRef] [PubMed]
- Bharti, R.; Jitendra, K.Y.; Priyanka, S.; Anant, P.P.; Ambesh, D. Aluminum-air batteries: Current advances and promises with future directions. RSC Adv. 2024, 14, 17628–17663. [Google Scholar]
- Sheng, L.; Fu, L.X.; Su, L.; Shen, H.N.; Zhang, Z.D. Method to characterize thermal performances of an aluminum-air battery. Energy 2024, 301, 131757. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Li, K.P.; Li, C.L.; Miao, X.J.; Araki, T.; Wu, M.P. Corrosion behavior of selective laser melted 6061 aluminum alloy electrodes for aluminum-air battery. J. Power Sources 2024, 594, 233999. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, T.Y.; Xie, G.; Shen, Q.F.; Yu, X.H.; Zhu, Y.L. Effect of cerium dioxide on the anode performance of aluminum-air batteries. Mater. Lett. 2024, 362, 136142. [Google Scholar] [CrossRef]
- Yin, X.; Yu, K.; Zhan, T.; Fang, H.J. Influence of rolling processing on discharge performance of Al-0.5Mg-0.1Sn-0.05Ga-0.05In alloy as anode for Aluminum-air battery. In. J. Electrochem. Sci. 2017, 12, 4150–4163. [Google Scholar] [CrossRef]
- Ma, J.; Ren, F.; Wang, G.; Yi, X.; Li, Y.; Wen, J. Electrochemical performance of melt-spinning Al-Mg-Sn based anode alloys. Int. J. Hydrogen Energy 2017, 42, 11654–11661. [Google Scholar]
- Wu, Z.B.; Zhang, H.T.; Nagaumi, H. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Aluminum-air batteries. J. Power Sources 2022, 521, 230928. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Zou, J.; Shen, X.; Nagaumi, H. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Aluminum-air battery by directional solidification technique and subsequent rolling process. J. Alloys Compd. 2020, 827, 154272. [Google Scholar] [CrossRef]
- Harchegani, R.K.; Riahi, A.R. Effect of cold-working on the discharge performance of commercially pure aluminum and AA7050 alloy anodes in primary alkaline aluminum-air battery. J. Electrochem. Soc. 2022, 169, 120525. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, X.B.; Liu, Z.W.; Zheng, Q.; Zheng, B. The role of hot extrusion in improving electrochemical properties of low-cost commercial Al alloy as anode for Aluminum-air battery. J. Electrochem. Soc. 2022, 909, 116127. [Google Scholar]
- Fan, L.; Lu, H.M.; Leng, J. Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Aluminum-air batteries. Electrochim. Acta 2015, 165, 22–28. [Google Scholar] [CrossRef]
- Zheng, X.B.; Zhang, T.; Yang, H.J.; Gao, Q.L.; Liu, Y.M.; Wang, Z.W.; Wang, W.; She, K. Friction stir processing induced elctrochemical performance improvement of commercial Al for Aluminum-air battery. Electrochim. Acta 2020, 354, 136635. [Google Scholar] [CrossRef]
- Katsoufis, P.; Mylona, V.; Politis, C.; Avgouropoulos, G.; Lianos, P. Study of some basic operation conditions of an Aluminum-air battery using technical grade commercial aluminum. J. Power Sources 2020, 450, 227624. [Google Scholar] [CrossRef]
- Katsoufis, P.; Katsaiti, M.; Mourelas, C.; Andrade, T.S.; Dracopoulos, V.; Politis, C.; Avgouropoulos, G.; Lianos, P. Study of a thin film aluminum-air battery. Energies 2020, 13, 1447. [Google Scholar] [CrossRef]
- Zhu, C.; Luo, L.; Yan, L.J. Interface engineering toward self-corrosion inhibited alkaline aluminum-air battery via optimized electrolyte system. J. Alloys Compd. 2023, 953, 170108. [Google Scholar] [CrossRef]
- Bing, M.C.; Fan, M.; Hu, Z.F. Electrochemical performance of SiC composite anode in aluminum-air battery. Electrochemistry 2020, 88, 525–531. [Google Scholar] [CrossRef]
- Xie, Y.M.; Meng, X.C.; Qin, Z.W. Reversible passivation in primary aluminum-air batteries via composite anodes. Energy Storage Mater. 2022, 49, 537–545. [Google Scholar] [CrossRef]
- Sovizi, M.R.; Afshari, M. Effect of nano zirconia on electrochemical performance, corrosion behavior and microstructure of Al-Mg-Sn-Ga anode for aluminum batteries. J. Alloys Compd. 2019, 792, 1088–1094. [Google Scholar] [CrossRef]
- Li, J.; Hui, K.S.; Ji, S.; Zha, C.; Yuan, C.; Wu, S.; Feng, B.; Fan, X.; Chen, F.; Shao, Z. Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum-graphite battery. Carbon Energy 2022, 4, 155–169. [Google Scholar] [CrossRef]
- Pancrecious, J.K.; Deepa, J.P.; Jayan, V.; Bill, U.S.; Rajan, T.; Pai, B.C. Nanoceria induced grain refinement in electroless Ni-B-CeO2 composite coating for enhanced wear and corrosion resistance of aluminium alloy. Surf. Coat. Technol. 2018, 356, 29–37. [Google Scholar] [CrossRef]
- Wu, M.J.; Jiang, F. Preparation and properties of MAO self-healing anticorrosion film on 5B70 Al alloy. Phys. Scr. 2023, 98, 125924. [Google Scholar] [CrossRef]
- Han, J.T.; Zhu, K.; Li, P.; Li, Y. Numerical modeling and performance analysis of anode with porous structure for aluminum-air batteries. Electrochem. Commun. 2024, 164, 107748. [Google Scholar] [CrossRef]
- Xia, Q.F.; Li, Y.; Sun, N.; Song, Z.Q.; Zhu, K.; Guan, J.H.; Li, P.; Tang, S.D.; Han, J.T. A multi-objective genetic algorithm-based predictive modeland parameter optimization for forming quality of SLM aluminum anodes. Crystals 2024, 14, 608. [Google Scholar] [CrossRef]
- Wang, K.Q.; Hu, Z.M.; Yin, C.T.; Qin, S.C.; Li, P.; Guan, J.H.; Zhu, K.; Li, Y.; Tang, S.D.; Han, J.T. Influence of laser process parameters on the forming quality and discharge performance of 3D-printed porous anodes for Aluminum-air batteries. Materials 2024, 17, 2837. [Google Scholar] [CrossRef] [PubMed]
- Han, J.T.; Zhu, K.; Duan, W.P. A comprehensive study on the overall performance of aluminum-air battery caused by anode structure. Mater. Chem. Phys. 2023, 309, 128334. [Google Scholar] [CrossRef]
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Laser Power [P/W] | 260 | 280 | 300 |
Scanning Speed [V/(mm/s)] | 900 | 1000 | 1100 |
Scan Spacing [S/mm] | 0.11 | 0.13 | 0.15 |
Number | Laser Power [P/W] | Scanning Speed [V/(mm/s)] | Scan Spacing [S/mm] | Corrosion Potential [Ecorr/V] | Self-Corrosion Rate [Va/mg/(cm2·h)] | Discharge Voltage [E/V] |
---|---|---|---|---|---|---|
1 | 300 | 1000 | 0.15 | −1.617 | 19.1 | −1.474 |
2 | 280 | 1000 | 0.13 | −1.635 | 13 | −1.578 |
3 | 280 | 1000 | 0.13 | −1.631 | 14.4 | −1.565 |
4 | 280 | 1000 | 0.13 | −1.64 | 13.5 | −1.573 |
5 | 300 | 900 | 0.13 | −1.616 | 23.1 | −1.458 |
6 | 280 | 1000 | 0.13 | −1.633 | 14.5 | −1.567 |
7 | 280 | 900 | 0.15 | −1.628 | 21.1 | −1.494 |
8 | 260 | 1000 | 0.15 | −1.624 | 19.5 | −1.47 |
9 | 260 | 1100 | 0.13 | −1.623 | 24.2 | −1.447 |
10 | 300 | 1000 | 0.11 | −1.618 | 18.8 | −1.478 |
11 | 260 | 1000 | 0.11 | −1.623 | 23.3 | −1.453 |
12 | 260 | 900 | 0.13 | −1.619 | 24.2 | −1.463 |
13 | 280 | 900 | 0.11 | −1.622 | 22.5 | −1.491 |
14 | 300 | 1100 | 0.13 | −1.614 | 23.8 | −1.497 |
15 | 280 | 1100 | 0.15 | −1.622 | 21.7 | −1.502 |
16 | 280 | 1100 | 0.11 | −1.631 | 22.4 | −1.477 |
17 | 280 | 1000 | 0.13 | −1.637 | 13.8 | −1.57 |
Source | Square Sum | Free Degree | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9.382 × 10−4 | 9 | 1.042 | 14.58 | 0.0009 (significant) |
Laser Power [P/W] | 7.200 × 10−5 | 1 | 7.200 × 10−5 | 10.07 | 0.0156 |
Scanning Speed [V/(mm/s)] | 3.125 × 10−6 | 1 | 3.125 × 10−6 | 0.44 | 0.5297 |
Scan Spacing [S/mm] | 1.125 × 10−6 | 1 | 1.125 × 10−6 | 0.16 | 0.7034 |
Laser Power and Scanning Speed [PV] | 9.000 × 10−6 | 1 | 9.000 × 10−6 | 1.26 | 0.2989 |
Laser Power and Scan Spacing [PS] | 1.000 × 10−6 | 1 | 1.000 × 10−6 | 0.14 | 0.7195 |
Scanning Speed and Scan Spacing [VS] | 5.625 × 10−5 | 1 | 5.625 × 10−5 | 7.87 | 0.0263 |
Laser Power and Laser Power [P2] | 5.305 × 10−4 | 1 | 5.305 × 10−4 | 74.20 | <0.0001 |
Scanning Speed and Scanning Speed [V2] | 1.503 × 10−4 | 1 | 1.503 × 10−4 | 21.02 | 0.0025 |
Scan Spacing and Scan Spacing [S2] | 5.084 × 10−5 | 1 | 5.084 × 10−5 | 7.11 | 0.0322 |
Residual | 5.005 × 10−5 | 7 | 7.150 × 10−6 | ||
Lack of Fit | 1.250 × 10−6 | 3 | 4.167 × 10−7 | 0.034 | 0.9903 (not significant) |
Pure Error | 4.880 × 10−5 | 4 | 1.220 × 10−5 | ||
Cor Total | 9.882 × 10−4 | 16 |
Source | Square Sum | Free Degree | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 273.90 | 9 | 30.43 | 65.21 | <0.0001 (significant) |
Laser Power [P/W] | 5.12 | 1 | 5.12 | 10.97 | 0.0129 |
Scanning Speed [V/(mm/s)] | 0.18 | 1 | 0.18 | 0.39 | 0.5543 |
Scan Spacing [S/mm] | 3.92 | 1 | 3.92 | 8.40 | 0.0230 |
Laser Power and Scanning Speed [PV] | 0.12 | 1 | 0.12 | 0.26 | 0.6242 |
Laser Power and Scan Spacing [PS] | 4.20 | 1 | 4.20 | 9.00 | 0.0199 |
Scanning Speed and Scan Spacing [VS] | 0.12 | 1 | 0.12 | 0.26 | 0.6242 |
Laser Power and Laser Power [P2] | 71.38 | 1 | 71.38 | 152.95 | <0.0001 |
Scanning Speed and Scanning Speed [V2] | 144.96 | 1 | 144.96 | 310.59 | <0.0001 |
Scan Spacing and Scan Spacing [S2] | 20.70 | 1 | 20.70 | 44.36 | 0.0003 |
Residual | 3.27 | 7 | 0.47 | ||
Lack of Fit | 1.70 | 3 | 0.57 | 1.44 | 0.3566 (not significant) |
Pure Error | 1.57 | 4 | 0.39 | ||
Cor Total | 277.16 | 16 |
Source | Square Sum | Free Degree | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 0.35 | 9 | 3.937 × 10−3 | 101.91 | <0.0001 (significant) |
Laser Power [P/W] | 6.845 × 10−4 | 1 | 6.845 × 10−4 | 17.72 | 0.0040 |
Scanning Speed [V/(mm/s)] | 3.612 × 10−5 | 1 | 3.612 × 10−5 | 0.94 | 0.3658 |
Scan Spacing [S/mm] | 2.101 × 10−4 | 1 | 2.101 × 10−4 | 5.44 | 0.0525 |
Laser Power and Scanning Speed [PV] | 7.562 × 10−4 | 1 | 7.562 × 10−4 | 19.57 | 0.0031 |
Laser Power and Scan Spacing [PS] | 1.102 × 10−4 | 1 | 1.102 × 10−4 | 2.85 | 0.1350 |
Scanning Speed and Scan Spacing [VS] | 1.210 × 10−4 | 1 | 1.210 × 10−4 | 3.13 | 0.1201 |
Laser Power and Laser Power [P2] | 0.017 | 1 | 0.017 | 436.67 | <0.0001 |
Scanning Speed and Scanning Speed [V2] | 7.095 × 10−3 | 1 | 7.095 × 10−3 | 183.64 | <0.0001 |
Scan Spacing and Scan Spacing [S2] | 6.257 × 10−3 | 1 | 6.257 × 10−3 | 161.96 | <0.0001 |
Residual | 2.705 × 10−4 | 7 | 3.864 × 10−5 | ||
Lack of Fit | 1.653 × 10−4 | 3 | 5.508 × 10−5 | 2.09 | 0.2437 (not significant) |
Pure Error | 1.052 × 10−4 | 4 | 2.630 × 10−5 | ||
Cor Total | 0.036 | 16 |
Number | Laser Power [P/W] | Scanning Speed [V/(mm/s)] | Scan Spacing [S/mm] | Corrosion Potential [Ecorr/V] | Self-corrosion Rate [Va/(mg/(cm2·h)] | Discharge Voltage [E/V] |
---|---|---|---|---|---|---|
1 | 291.5023 | 989.2788 | 0.139287 | −1.632673 | 13.81666 | −1.57123 |
2 | 281.5944 | 998.3899 | 0.132807 | −1.63362 | 13.784 | −1.57083 |
3 | 277.2189 | 1009.925 | 0.128042 | −1.63362 | 14.22881 | −1.56678 |
4 | 288.2283 | 1010.055 | 0.141985 | −1.63532 | 14.22954 | −1.56678 |
5 | 277.5921 | 1005.743 | 0.129369 | −1.6343 | 14.07631 | −1.5683 |
6 | 289.9363 | 1006.301 | 0.129417 | −1.63529 | 14.04879 | −1.56871 |
7 | 277.441 | 1009.011 | 0.118084 | −1.63532 | 14.19302 | −1.56719 |
8 | 267.5184 | 1012.895 | 0.128606 | −1.63351 | 14.13265 | −1.56776 |
9 | 281.0063 | 995.212 | 0.131208 | −1.63485 | 13.83003 | −1.57118 |
10 | 281.9377 | 1004.124 | 0.116115 | −1.63458 | 13.80748 | −1.57115 |
11 | 278.3544 | 1023.219 | 0.119869 | −1.63526 | 13.99577 | −1.56934 |
12 | 277.5667 | 1009.466 | 0.128332 | −1.63532 | 14.17154 | −1.56749 |
13 | 267.2362 | 1010.146 | 0.125042 | −1.63532 | 14.22993 | −1.56679 |
14 | 278.1991 | 1008.395 | 0.130091 | −1.63526 | 14.02032 | −1.56914 |
15 | 269.3623 | 1003.072 | 0.136672 | −1.63514 | 13.88364 | −1.57046 |
16 | 278.2344 | 1005.55 | 0.129128 | −1.63528 | 14.03226 | −1.56895 |
17 | 277.2475 | 988.725 | 0.126705 | −1.63532 | 14.17215 | −1.56733 |
18 | 277.6509 | 1008.859 | 0.138496 | −1.63531 | 14.14704 | −1.56775 |
19 | 279.437 | 1013.918 | 0.131586 | −1.63409 | 13.8631 | −1.57056 |
20 | 280.1428 | 1005.363 | 0.129733 | −1.63506 | 13.89503 | −1.57066 |
21 | 278.1138 | 1015.675 | 0.131093 | −1.63523 | 13.96792 | −1.56936 |
22 | 277.5955 | 989.272 | 0.128699 | −1.63431 | 14.14565 | −1.56776 |
23 | 278.0763 | 1005.09 | 0.130619 | −1.63525 | 13.98045 | −1.56927 |
24 | 277.4882 | 1008.988 | 0.128115 | −1.63362 | 14.18632 | −1.56728 |
25 | 267.5423 | 1025.522 | 0.129356 | −1.6353 | 14.08802 | −1.56819 |
26 | 281.1806 | 1017.831 | 0.139083 | −1.63477 | 13.79264 | −1.57111 |
27 | 274.2685 | 1009.783 | 0.128044 | −1.63532 | 14.2219 | −1.56686 |
28 | 278.7324 | 1005.845 | 0.130231 | −1.63422 | 13.95284 | −1.56982 |
29 | 288.1044 | 1016.219 | 0.129869 | −1.63527 | 14.01479 | −1.56908 |
30 | 291.2523 | 1014.278 | 0.143287 | −1.63419 | 13.81863 | −1.57122 |
No. | Response Target | Pareto Theory Predicted Values | Experimental Value | Error |
---|---|---|---|---|
5 | Corrosion potential Ecorr/V | −1.634 | −1.632 | 1.23% |
15 | −1.635 | −1.632 | 1.84% | |
25 | −1.635 | −1.633 | 1.23% | |
5 | Self-corrosion rate va/mg/(cm2·h) | 14.1 | 14.5 | 2.76% |
15 | 13.9 | 13.5 | 2.96% | |
25 | 14.1 | 14.3 | 1.40% | |
5 | Discharge voltage E/V | −1.568 | −1.565 | 1.92% |
15 | −1.570 | −1.567 | 1.91% | |
25 | −1.568 | −1.569 | 0.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, G.; Niu, C.; Geng, Y.; Duan, W.; Cao, S. Multi-Objective Optimization for the Forming Quality of a CeO2/Al6061 Alloy as an Aluminum–Air Battery Anode Manufactured via Selective Laser Melting. Crystals 2024, 14, 784. https://doi.org/10.3390/cryst14090784
Peng G, Niu C, Geng Y, Duan W, Cao S. Multi-Objective Optimization for the Forming Quality of a CeO2/Al6061 Alloy as an Aluminum–Air Battery Anode Manufactured via Selective Laser Melting. Crystals. 2024; 14(9):784. https://doi.org/10.3390/cryst14090784
Chicago/Turabian StylePeng, Guangpan, Chenhao Niu, Yuankun Geng, Weipeng Duan, and Shu Cao. 2024. "Multi-Objective Optimization for the Forming Quality of a CeO2/Al6061 Alloy as an Aluminum–Air Battery Anode Manufactured via Selective Laser Melting" Crystals 14, no. 9: 784. https://doi.org/10.3390/cryst14090784
APA StylePeng, G., Niu, C., Geng, Y., Duan, W., & Cao, S. (2024). Multi-Objective Optimization for the Forming Quality of a CeO2/Al6061 Alloy as an Aluminum–Air Battery Anode Manufactured via Selective Laser Melting. Crystals, 14(9), 784. https://doi.org/10.3390/cryst14090784