Multiaxial Fatigue Lifetime Estimation Based on New Equivalent Strain Energy Damage Model under Variable Amplitude Loading
Abstract
:1. Introduction
2. Proposed Equivalent Strain Energy Method
3. Multiaxial Fatigue Lifetime Calculation
3.1. Stress–Strain Analysis for Multiaxial Load
3.1.1. Three-Dimensional Stress Condition
- (1)
- By employing the normal vector , the angle of a general plane is calculated as shown within Figure 5. Via orientation angles and , the normal vector can be denoted. is the orientation angle between the and normal vector Z-axis, and is the angle between the projection of normal vector and X-axis on the X-Y plane. Additionally, an innovative coordinate can be obtained as depicted within Figure 5, in which the -axis is situated at the intersection line related to the X-Y plane and general material plane , and the -axis lies upon the plane .
- (2)
- Upon the th analytical plane , the calculated strain and stress tensors are able to be expressed using angles and below:
3.1.2. Plane Stress State
3.2. Multiaxial Cycle Count Method
3.3. Calculation of the Critical Plane with Regard to Every Count Reversal
- (1)
- The shear strain range can be computed using angles and on the ith candidate plane.
- (2)
- Via making angles and change between and and and , respectively, the torsional strain amplitude can be computed. Subsequently, the direction angle of the plane with maximum torsional strain amplitude can be obtained.
- (3)
- By utilizing Equation (24), the ranges of normal strain can be calculated as follows:
- (4)
- For those planes with maximum range of torsional stress , the normal strain amplitudes on the planes are made into a comparison. According to the largest torsional stress range plane with the maximum amplitude of normal strain, the orientation of the critical plane can be calculated. Furthermore, the angles and are utilized to denote the pair of direction angles with regard to the critical plane.
3.4. Computation of Multiaxial Fatigue Damage Quantities upon the Critical Plane
- (1)
- By utilizing Equation (25), the largest torsional strain range is calculated:
- (2)
- Between adjacent turning time instants of the largest torsional strain range, the maximum excursion of normal strain can be computed utilizing Equation (26):
- (3)
- The largest torsional stress range () can be calculated adapting Equation (27):
- (4)
- By utilizing Equation (28), the largest tensile stress is calculated as shown below:
3.5. Multiaxial Fatigue Damage Estimation
4. Experiment Validation Results
5. Discussion
6. Conclusions
- (1)
- An important multiaxial damage quantity upon the critical plane, which is described as the tensile stress excursion during contiguous turn time instants of the largest torsional stress, is proposed in this study. The proposed damage quantity has been validated to be sensitive for the out-of-phase cyclic hardening of multiaxial loading paths.
- (2)
- By integrating the critical plane method with the thinking of strain energy, an axial equivalent strain energy damage model (EBDP model) is proposed upon the critical plane, which does not contain any supernumerary material parameters. The influences of mean stress and out-of-phase cyclic hardening are able to be taken into consideration within the presented multiaxial fatigue damage model.
- (3)
- Compared with the VF, PHC, and VKG damage models, the proposed EBDP model is able to supply more accurate fatigue lifetime estimations for the selected two materials experiencing multiaxial variable amplitude loads.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.L.; Cheng, Q.; Qi, B.B.; Tao, Z.Q. A general approach for the machining quality evaluation of S-shaped specimen based on POS-SQP algorithm and Monte Carlo method. J. Manuf. Syst. 2021, 60, 553–568. [Google Scholar] [CrossRef]
- Pan, X.; Su, H.; Sun, C.; Hong, Y. The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy. Int. J. Fatigue 2018, 115, 67–78. [Google Scholar] [CrossRef]
- Sedmak, A.; Vucetic, F.; Colic, K.; Grbovic, A.; Sedmak, S.; Kirin, S.; Berto, F. Fatigue life assessment of orthopedic plates made of Ti6Al4V. Eng. Fail. Anal. 2022, 137, 106259. [Google Scholar] [CrossRef]
- Giannella, V.; Sepe, R.; Borrelli, A.; De Michele, G.; Armentani, E. Numerical investigation on the fracture failure of a railway. Eng. Fail. Anal. 2021, 129, 105680. [Google Scholar] [CrossRef]
- Nourian-Avval, A.; Khonsari, M.M. A new model for fatigue life prediction under multiaxial loadings based on energy dissipation. Int. J. Fatigue 2021, 151, 106255. [Google Scholar] [CrossRef]
- Findley, W.N. Modified theory of fatigue failure under combined stress. Proc. Soc. Exp. Stress Anal. 1956, 14, 35–46. [Google Scholar]
- McDiarmid, D.L. A shear stress based critical plane criterion of multiaxial fatigue failure for design and life prediction. Fatigue Fract. Eng. Mater. Struct. 1994, 17, 1475–1485. [Google Scholar] [CrossRef]
- Brown, M.W.; Miller, K.J. A theory for fatigue failure under multiaxial stress-strain conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. [Google Scholar] [CrossRef]
- Gates, N.R.; Fatemi, A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis. Int. J. Fatigue 2017, 100, 322–336. [Google Scholar] [CrossRef]
- Smith, K.N.; Watson, P.; Topper, T.H. A stress-strain function for the fatigue of materials. J. Mater. 1970, 5, 767–778. [Google Scholar]
- Socie, D. Multiaxial fatigue damage models. J. Eng. Mater. Technol. Trans. ASME 1987, 109, 293–298. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Zhu, S.P.; Liu, Q.; Liu, Y.H. A new energy-critical plane damage parameter for multiaxial fatigue life prediction of turbine blades. Materials 2017, 10, 513. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, S.; Huang, D. A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 679–686. [Google Scholar]
- Li, J.; Liu, J.; Sun, Q.; Zhang, Z.P.; Qiao, Y.J. A modification of Smith-Watson-Topper damage parameter for fatigue life prediction under non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 301–316. [Google Scholar] [CrossRef]
- Jiang, Y. A fatigue criterion for general multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 19–32. [Google Scholar] [CrossRef]
- Ince, A.; Glinka, G. A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue Fract. Eng. Mater. Struct. 2011, 34, 854–867. [Google Scholar] [CrossRef]
- Varvani-Farahani, A. A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions. Int. J. Fatigue 2000, 22, 295–305. [Google Scholar] [CrossRef]
- Glinka, G.; Wang, G.; Plumtree, A. Mean stress effects in multiaxial fatigue. Fatigue Fract. Eng. Mater. Struct. 1995, 18, 755–764. [Google Scholar] [CrossRef]
- Pan, W.F.; Hung, C.Y.; Chen, L.L. Fatigue life estimation under multiaxial loadings. Int. J. Fatigue 1999, 21, 3–10. [Google Scholar] [CrossRef]
- Varvani-Farahani, A.; Kodric, T.; Ghahramani, A. A method of fatigue life prediction in notched and un-notched components. J. Mater. Process. Technol. 2005, 169, 94–102. [Google Scholar] [CrossRef]
- Chu, C.C. Fatigue damage calculation using the critical plane approach. J. Eng. Mater. Technol. 1995, 117, 41–49. [Google Scholar] [CrossRef]
- Liu, K.C. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In Advances in Multiaxial Fatigue; STP 1191; American Society for Testing and Materials: Philadelphia, PA, USA, 1993; pp. 67–84. [Google Scholar]
- Abu Dabous, S.; Ibrahim, F.; Feroz, S.; Alsyouf, I. Integration of failure mode, effects, and criticality analysis with multi-criteria decision-making in engineering applications: Part I—Manufacturing industry. Eng. Fail. Anal. 2021, 122, 105264. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Zhang, R.; Liu, C.; Zhang, Z. Numerical simulation of reinforced concrete slab subjected to blast loading and the structural damage assessment. Eng. Fail. Anal. 2020, 118, 104926. [Google Scholar] [CrossRef]
- Vučetića, N.; Jovičićb, G.; Krstićc, B.; Živkovićb, M.; Milovanovićb, V.; Kačmarčikd, J.; Antunovića, R. Research of an aircraft engine cylinder assembly integrity assessment–Thermomechanical FEM analysis. Eng. Fail. Anal. 2020, 111, 104453. [Google Scholar] [CrossRef]
- Perez, I.M.; Constantinescu, A.; Bastid, P.; Zhang, Y.H.; Venugopal, V. Computational fatigue assessment of mooring chains under tension loading. Eng. Fail. Anal. 2019, 106, 104043. [Google Scholar] [CrossRef]
- Pelliccione, A.S.; SantAnna, R.; Siqueira, M.H.S.; Ribeiro, A.F.; Ramos, J.E.; Silva, O.P.; Pimentel, M.F. Failure analysis of a titanium plate heat exchanger– Mechanical fatigue. Eng. Fail. Anal. 2019, 105, 1172–1188. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, B.; Hu, D.; Jiang, K.; Liu, H.; Mao, J.; Jing, F.; Hao, X. Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade. Eng. Fail. Anal. 2019, 102, 35–45. [Google Scholar] [CrossRef]
- Kepka, M.; Kepka Jr, M. Deterministic and probabilistic fatigue life calculations of a damaged welded joint in the construction of the trolleybus rear axle. Eng. Fail. Anal. 2018, 93, 257–267. [Google Scholar] [CrossRef]
- Arias Velásquez, R.M.; Mejía Lara, J.V. New methodology for design and failure analysis of underground transmission lines. Eng. Fail. Anal. 2020, 115, 104604. [Google Scholar] [CrossRef]
- Luo, H.; Yu, C.; Liu, Y.; Kan, Q.; Kang, G. A semi-empirical life-prediction model for multiaxial ratchetting-fatigue interaction of SUS301L stainless steel tubular welded joint. Int. J. Fatigue 2024, 188, 108538. [Google Scholar] [CrossRef]
- Zhao, W.; Luo, S.; Liang, X.; Pang, Z.; Song, J.; Cao, Z.; Cheng, F.; Fan, W.; He, W.; Cheng, R. Nonlocal multiaxial fatigue model based on artificial neural networks for predicting fretting fatigue life of dovetail joints. Int. J. Fatigue 2024, 189, 108546. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Wei, D.; Yang, S. An engineering applicable method for multiaxial fatigue under proportional and non-proportional loads based on the octahedral plane projection. Int. J. Fatigue 2024, 187, 108475. [Google Scholar] [CrossRef]
- Zhao, B.; Xie, L.; Wang, L.; Hu, Z.; Zhou, S.; Bai, X. A new multiaxial fatigue life prediction model for aircraft aluminum alloy. Int. J. Fatigue 2021, 143, 105993. [Google Scholar] [CrossRef]
- Castro Sousa, F.; Akhavan-Safar, A.; Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M. Experimental behaviour and fatigue life prediction of bonded joints subjected to variable amplitude fatigue. Int. J. Fatigue 2025, 190, 108583. [Google Scholar] [CrossRef]
- Choi, J.; Quagliato, L.; Lee, S.; Shin, J.; Kim, N. Multiaxial fatigue life prediction of polychloroprene rubber (CR) reinforced with tungsten nano-particles based on semi-empirical and machine learning models. Int. J. Fatigue 2021, 145, 106136. [Google Scholar] [CrossRef]
- Amjadi, M.; Fatemi, A. A critical plane approach for multiaxial fatigue life prediction of short fiberreinforced thermoplastic composites. Compos. Part A 2024, 180, 108050. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, K.; Wang, A.; Wu, H.; Zhong, Z. Neural network integrated with symbolic regression for multiaxial fatigue life prediction. Int. J. Fatigue 2024, 188, 108535. [Google Scholar] [CrossRef]
- Almamoori, M.; Alizadeh, Y. A novel approach to multiaxial fatigue life prediction using the critical plane and phase difference angle. Eng. Fail. Anal. 2023, 154, 107654. [Google Scholar] [CrossRef]
- Ferreira, J.L.A.; Dias, J.N.; Lima, F.M.; Araújo, J.A.; da Silva, C.R.M. Evaluation of the accuracy and efficiency of the modified maximum variance method for multiaxial fatigue analysis under constant amplitude loading. Int. J. Fatigue 2024, 188, 108537. [Google Scholar] [CrossRef]
- Shang, D.G.; Wang, D.J. A new multiaxial fatigue damage model based on the critical plane approach. Int. J. Fatigue 1998, 20, 241–245. [Google Scholar]
- Tao, Z.Q. Research on Fatigue Life Prediction Method for Notched Component under Multiaxial Variable Amplitude Loading. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 2018. [Google Scholar]
- Tao, Z.Q.; Shang, D.G.; Liu, H.; Chen, H. Life prediction based on weight-averaged maximum shear strain range plane under multiaxial variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 907–920. [Google Scholar] [CrossRef]
- Wang, C.H.; Brown, M.W. Life prediction techniques for variable amplitude multiaxial fatigue—Part I: Theories. J. Eng. Mater. Technol.—Trans. ASME 1996, 118, 367–370. [Google Scholar] [CrossRef]
- Kepka, M.; Kepka, J.M. Consideration of random loading processes and scatter of fatigue properties for assessing the service life of welded bus bodyworks. Int. J. Fatigue 2021, 151, 106324. [Google Scholar] [CrossRef]
- Chen, H.; Shang, D.G.; Tian, Y.J.; Liu, J.Z. Comparison of multiaxial fatigue damage models under variable amplitude loading. J. Mech. Sci. Technol. 2012, 26, 3439–3446. [Google Scholar] [CrossRef]
- Ma, S.; Markert, B.; Yuan, H. Multiaxial fatigue life assessment of sintered porous iron under proportional and non-proportional loadings. Int. J. Fatigue 2017, 97, 214–226. [Google Scholar] [CrossRef]
- Kraft, J.; Vormwald, M. Energy driven integration of incremental notch stress-strain approximation for multiaxial cyclic loading. Int. J. Fatigue 2021, 145, 106043. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Qian, G.; Li, X.; Sun, J.; Zhang, Z.L.; Hong, Y. Multiaxial fatigue life estimation based on weight-averaged maximum damage plane under variable amplitude loading. J. Mater. Res. Technol. 2023, 23, 2557–2575. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Qian, G.; Sun, J.; Zhang, Z.L.; Hong, Y. Multiaxial fatigue life prediction by equivalent energy based critical plane damage parameter under variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 3640–3657. [Google Scholar] [CrossRef]
- Madrigal, C.; Navarro, A.; Chaves, V. Plasticity theory for the multiaxial Local Strain-Life Method. Int. J. Fatigue 2017, 100, 575–582. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Wang, Z.; Pan, X.; Su, T.; Long, X.; Liu, B.; Tang, Q.; Ren, X.; Sun, C.; Qian, G.; et al. A new probabilistic control volume scheme to interpret specimen size effect on fatigue life of additively manufactured titanium alloys. Int. J. Fatigue 2024, 183, 108262. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Shang, D.G.; Sun, Y.J. New pseudo stress correction method for estimating local strains at notch under multiaxial cyclic loading. Int. J. Fatigue 2017, 103, 280–293. [Google Scholar] [CrossRef]
- Song, W.; Liu, X.S.; Xu, J.; Fan, Y.; Shi, D.H.; Khosravani, M.R.; Berto, F. Multiaxial low cycle fatigue of notched 10CrNi3MoV steel and its undermatched welds. Int. J. Fatigue 2021, 150, 106309. [Google Scholar] [CrossRef]
- Pan, X.; Du, L.; Qian, G.; Hong, Y. Microstructure features induced by fatigue crack initiation up to very-high-cycle regime for an additively manufactured aluminium alloy. J. Mater. Sci. Technol. 2024, 173, 247–260. [Google Scholar] [CrossRef]
- Pan, X.; Hong, Y. High-cycle and very-high-cycle fatigue of an additively manufactured aluminium alloy under axial cycling at ultrasonic and conventional frequencies. Int. J. Fatigue 2024, 185, 108363. [Google Scholar] [CrossRef]
- Pan, X.; Su, H.; Liu, X.; Hong, Y. Multi-scale fatigue failure features of titanium alloys with equiaxed or bimodal microstructures from low-cycle to very-high-cycle loading numbers. Mater. Sci. Eng. A 2024, 890, 145906. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, J.Z.; Yang, L.; Du, X.L. A phase field framework for corrosion fatigue of carbon steel. Int. J. Fatigue 2025, 190, 108603. [Google Scholar] [CrossRef]
- Araujo, L.C.; Malcher, L.; Oliveira D de Araújo, J.A. A new multiaxial fatigue endurance model for high strength steels taking into account the presence of small defects. Int. J. Fatigue 2024, 178, 107981. [Google Scholar] [CrossRef]
- Meggiolaro, M.A.; Castro, J.T.P.; Wu, H. Static axial tension or compression stress effects on shear cracks initiating under cyclic torsion loads in multiaxial fatigue tests. Int. J. Fatigue 2024, 179, 108021. [Google Scholar] [CrossRef]
- Faes, J.C.; Dinh, T.D.; Lammens, N.; Paepegem, W.V. Near real-time calculation of the critical plane in all surface nodes of large metallic structures under multiaxial fatigue loading by visualization of the solution space. Int. J. Fatigue 2024, 187, 108465. [Google Scholar] [CrossRef]
- Seyda, J.; Pejkowski, Ł.; Chorobiński, M. Study on the behavior of small cracks in PA38-T6 (6060-T6) aluminum alloy under multiaxial fatigue loadings. Int. J. Fatigue 2024, 184, 108282. [Google Scholar] [CrossRef]
- Xu, L.; Wang, R.Z.; Wang, J.; He, L.; Itoh, T.; Miura, H.; Zhang, X.C.; Tu, S.T. On multiaxial creep–fatigue considering the non-proportional loading effect: Constitutive modeling, deformation mechanism, and life prediction. Int. J. Plast. 2022, 155, 103337. [Google Scholar] [CrossRef]
- Wismans, M.; van Dommelen, J.A.W.; Engels, T.A.P.; van Breemen, L.C.A. A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditions. J. Mech. Phys. Solids 2024, 183, 105499. [Google Scholar] [CrossRef]
- Rao, S.P.; Sivaprasad, S.; Bar, H.N.; Dey, P.P. Experimental investigation and computational modelling of 304LN stainless steel under constant and variable strain path multiaxial loading conditions. Int. J. Fatigue 2025, 190, 108581. [Google Scholar] [CrossRef]
- Xu, X.; Ding, L.; Miao, H.; Wen, Z.; Chen, R.; Kan, Q.; Kang, G. Nonproportionally multiaxial cyclic plastic deformation of U75 rail steel: Experiment and modeling. Int. J. Fatigue 2023, 168, 107480. [Google Scholar] [CrossRef]
- Pandey, V.; Arora, P.; Gupta, S.K.; Khutia, N.; Dey, P.P. An improved strain path dependent model under multiaxial cyclic loading for simulating material response of low C-Mn steel. Int. J. Fatigue 2023, 167, 107322. [Google Scholar] [CrossRef]
- Wang, X.; Rong, Q.; Shi, Z.; Lin, J. Improved creep behaviour for a high strength Al-Li alloy in creep age forming: Experimental studies and constitutive modelling. Int. J. Plast. 2022, 159, 103447. [Google Scholar] [CrossRef]
- Khiêm, V.N.; Le Cam, J.B.; Charlès, S.; Itskov, M. Thermodynamics of strain-induced crystallization in filled natural rubber under uni- and biaxial loadings, Part II: Physically-based constitutive theory. J. Mech. Phys. Solids 2022, 159, 104712. [Google Scholar] [CrossRef]
- Marques, A.E.; Parreira, T.G.; Pereira, A.F.G.; Ribeiro, B.M.; Prates, P.A. Machine learning applications in sheet metal constitutive Modelling: A review. Int. J. Solids Struct. 2024, 303, 113024. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.; Xuan, H.; Liu, Y.; Huang, B. A modified cyclic elastoplastic constitutive model considering the variational dynamic recovery term of back stress for FGH95 under asymmetrical cyclic loading. Int. J. Fatigue 2025, 190, 108601. [Google Scholar] [CrossRef]
- Xu, B.; Su, A.; Wang, Z.; Yu, C.; Kang, G. A multiscale constitutive model of magnesium-shape memory alloy composite. Int. J. Plast. 2024, 178, 104011. [Google Scholar] [CrossRef]
- Yang, S.; Hu, W.; Zhan, Z.; Li, J.; Zhang, D.; Meng, Q. A novel model considering combined effects of as-built roughness and notch for multiaxial fatigue life prediction of L-PBF Ti6Al4V. Theor. Appl. Fract. Mech. 2024, 131, 104390. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.; Zhou, F.; Zhao, H.; Wang, J. Multiaxial fatigue life prediction model for notched specimen based on modified energy gradient and critical plane method. Theor. Appl. Fract. Mech. 2023, 125, 103880. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Zhang, M.; Zhu, Y.; Cai, T.; Zhang, Z.L.; Liu, H.; Bai, B.; Li, D.H. Multiaxial notch fatigue life prediction based on the dominated loading control mode under variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 225–239. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Lu, J.; Wang, J.; Feng, R.; Ren, J. Probabilistic fatigue evaluation of notched specimens considering small sample properties under multiaxial loading. Theor. Appl. Fract. Mech. 2024, 130, 104316. [Google Scholar] [CrossRef]
- Fan, X.; Kethamukkala, K.; Kwon, S.; Iyyer, N.; Liu, Y. High-cycle and low-cycle fatigue life prediction under random multiaxial loadings without cycle counting. Eng. Fract. Mech. 2024, 298, 109894. [Google Scholar] [CrossRef]
- Hua, F.; Liu, J.; Pan, X.; Zhao, H.; Zhang, Z.; Lang, S. Research on multiaxial fatigue life of notched specimens based on Weibull distribution and Bayes estimation. Int. J. Fatigue 2023, 166, 107271. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Zhang, M.; Zhu, Y.; Shang, D.G.; Cai, T.; Zhang, Z.L.; Bai, B. Notch fatigue life prediction considering nonproportionality of local loading path under multiaxial cyclic loading. Fatigue Fract. Eng. Mater. Struct. 2019, 43, 92–109. [Google Scholar] [CrossRef]
- Liu, J.; Hua, F.; Lang, S.; Ran, Y.; Zi, R. Evaluation of fatigue strength on multiaxial notched specimens considering failure probability. Int. J. Fatigue 2022, 156, 106649. [Google Scholar] [CrossRef]
- Branco, R.; Prates, P.A.; Costa, J.D.; Ferreira, J.A.M.; Capela, C.; Berto, F. Notch fatigue analysis and crack initiation life estimation of maraging steel fabricated by laser beam powder bed fusion under multiaxial loading. Int. J. Fatigue 2021, 153, 106468. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Shang, D.G.; Sun, Y.J.; Liu, X.D.; Chen, H.; Li, Z.G. Multiaxial notch fatigue life prediction based on pseudo stress correction and finite element analysis under variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1674–1690. [Google Scholar] [CrossRef]
- Susmel, L. Notches, nominal stresses, fatigue strength reduction factors and constant/variable amplitude multiaxial fatigue loading. Int. J. Fatigue 2022, 162, 106941. [Google Scholar] [CrossRef]
- Branco, R.; Prates, P.; Costa, J.D.; Cruces, A.; Lopez-Crespo, P.; Berto, F. On the applicability of the cumulative strain energy density for notch fatigue analysis under multiaxial loading. Theor. Appl. Fract. Mech. 2022, 120, 103405. [Google Scholar] [CrossRef]
- Kraft, J.; Linn, A.; Wächter, M.; Esderts, A.; Vormwald, M. Accuracy analyses of fatigue life predictions for multiaxially non-proportionally stressed notched components—A database evaluation. Int. J. Fatigue 2022, 163, 107088. [Google Scholar] [CrossRef]
- Gao, J.; Heng, F.; Yuan, Y.; Liu, Y. A novel machine learning method for multiaxial fatigue life prediction:Improved adaptive neuro-fuzzy inference system. Int. J. Fatigue 2024, 178, 108007. [Google Scholar] [CrossRef]
- Pan, X.; Xu, S.; Qian, G.; Nikitin, A.; Shanyavskiy, A.; Palin-Luc, T.; Hong, Y. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure. Mater. Sci. Eng. A 2020, 798, 140110. [Google Scholar] [CrossRef]
- Deng, Q.; Zhu, S.P.; Niu, X.; Lesiuk, G.; Macek, W.; Wang, Q. Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings. Int. J. Fatigue 2023, 166, 107281. [Google Scholar] [CrossRef]
- He, G.Y.; Zhao, Y.X.; Yan, C.L. Uncertainty quantification in multiaxial fatigue life prediction using Bayesian neural networks. Eng. Fract. Mech. 2024, 298, 109961. [Google Scholar] [CrossRef]
- Pan, X.; Qian, G.; Hong, Y. Nanograin formation in dimple ridges due to local severe-plastic-deformation during ductile fracture. Scr. Mater. 2021, 194, 11363. [Google Scholar] [CrossRef]
- Zhao, B.; Song, J.; Xie, L.; Ma, H.; Li, H.; Ren, J.; Sun, W. Multiaxial fatigue life prediction method based on the back-propagation neural network. Int. J. Fatigue 2023, 166, 107274. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Su, Z.; Yao, W. Multiaxial fatigue life prediction based on single defect for additively manufactured 316L. Int. J. Fatigue 2022, 163, 107101. [Google Scholar] [CrossRef]
- Pan, X.; Hong, Y. High-cycle and very-high-cycle fatigue behaviour of a titanium alloy with equiaxed microstructure under different mean stresses. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1950–1964. [Google Scholar] [CrossRef]
- Yang, J.; Kang, G.; Kan, Q. A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature. Int. J. Fatigue 2022, 162, 106851. [Google Scholar] [CrossRef]
- Markham, M.J.; Fatemi, A. Multiaxial fatigue life predictions of additively manufactured metals using a hybrid of linear elastic fracture mechanics and a critical plane approach. Int. J. Fatigue 2024, 178, 107979. [Google Scholar] [CrossRef]
- Pan, X.; Qian, G.; Wu, S.; Fu, Y.; Hong, Y. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Sci. Rep. 2020, 10, 4742. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Li, H.Y. Evaluation of multiaxial fatigue life prediction approach for adhesively bonded hollow cylinder butt-joints. Int. J. Fatigue 2022, 156, 106692. [Google Scholar] [CrossRef]
- Ma, T.H.; Zhang, Y.C.; Yao, X.M.; Chang, L.; He, X.H.; Zhou, C.Y. Asymmetrical multiaxial low-cycle fatigue behavior and life prediction of CP-Ti under non-proportional stress-controlled mode. Eng. Fract. Mech. 2023, 291, 109542. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, T.; Song, K.; Chen, X. An image recognition based multiaxial low-cycle fatigue life prediction method with CNN model. Int. J. Fatigue 2023, 167, 107324. [Google Scholar] [CrossRef]
- Karolczuk, A.; Kurek, M. Fatigue life uncertainty prediction using the Monte Carlo and Latin hypercube sampling techniques under uniaxial and multiaxial cyclic loading. Int. J. Fatigue 2022, 160, 106867. [Google Scholar] [CrossRef]
- Pan, X.; Xu, S.; Nikitin, A.; Shanyavskiy, A.; Palin-Luc, T.; Hong, Y. Crack initiation induced nanograins and facets of a titanium alloy with lamellar and equiaxed microstructure in very-high-cycle fatigue. Mater. Lett. 2024, 357, 135769. [Google Scholar] [CrossRef]
- Gan, L.; Wu, H.; Zhong, Z. Multiaxial fatigue life prediction based on a simplified energy-based model. Int. J. Fatigue 2021, 144, 106036. [Google Scholar] [CrossRef]
Spe. No. | Δεx/2 (%) | Δσx/2 (MPa) | Δγxy/2 (%) | Δτxy/2 (MPa) | φ (Deg) | Δεeq/2 (%) | Nf (Cycle) | EBDP | VF |
---|---|---|---|---|---|---|---|---|---|
A74 | 0.493 | 292.82 | 0.849 | 158.28 | 0 | 0.7 | 1460 | 1446 | 1743 |
A159 | 0.545 | 338.80 | 0.905 | 178.43 | 45 | 0.7 | 521 | 589 | 817 |
A122 | 0.703 | 416.21 | 1.208 | 230.55 | 90 | 0.7 | 203 | 267 | 187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.-Q.; Pan, X.; Zhang, Z.-L.; Chen, H.; Li, L.-X. Multiaxial Fatigue Lifetime Estimation Based on New Equivalent Strain Energy Damage Model under Variable Amplitude Loading. Crystals 2024, 14, 825. https://doi.org/10.3390/cryst14090825
Tao Z-Q, Pan X, Zhang Z-L, Chen H, Li L-X. Multiaxial Fatigue Lifetime Estimation Based on New Equivalent Strain Energy Damage Model under Variable Amplitude Loading. Crystals. 2024; 14(9):825. https://doi.org/10.3390/cryst14090825
Chicago/Turabian StyleTao, Zhi-Qiang, Xiangnan Pan, Zi-Ling Zhang, Hong Chen, and Li-Xia Li. 2024. "Multiaxial Fatigue Lifetime Estimation Based on New Equivalent Strain Energy Damage Model under Variable Amplitude Loading" Crystals 14, no. 9: 825. https://doi.org/10.3390/cryst14090825
APA StyleTao, Z. -Q., Pan, X., Zhang, Z. -L., Chen, H., & Li, L. -X. (2024). Multiaxial Fatigue Lifetime Estimation Based on New Equivalent Strain Energy Damage Model under Variable Amplitude Loading. Crystals, 14(9), 825. https://doi.org/10.3390/cryst14090825