Engineering the Mechanics and Thermodynamics of Ti3AlC2, Hf3AlC2, Hf3GaC2, (ZrHf)3AlC2, and (ZrHf)4AlN3 MAX Phases via the Ab Initio Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
κ | Thermal conductivity |
μ | Poisson ratio |
Density | |
σ | Electrical conductivity |
Debye temperature | |
Al | Aluminium |
B | Bulk modulus/Boron |
C | Carbon |
CASTEP | Cambridge Serial Total Energy Package |
Elastic stiffness constant | |
Specific heat at constant volume | |
E | Young’s modulus |
G | Shear modulus |
Hf | Hafnium |
Ga | Gallium |
Vickers hardness | |
Ecut | Kinetic energy cut-off |
GGA | Generalised Gradient Approximation |
Boltzmann constant | |
N | Nitrogen |
n | Pugh’s modulus ratio |
Avogadro’s number | |
PBE | Perdew–Burke–Ernzerhof |
S | Entropy |
Ti | Titanium |
Melting temperature | |
, , | Mean, longitudinal, and transverse sound velocities, respectively |
Zr | Zirconium |
References
- Zhang, Z.; Duan, X.; Jia, D.; Zhou, Y.; Zwaag, S. On the formation mechanisms and properties of MAX phases: A review. J. Eur. Ceram. Soc. 2021, 41, 3851–3878. [Google Scholar] [CrossRef]
- Shao, H.; Luo, S.; Descamps-Mandine, A.; Ge, K.; Lin, Z.; Taberna, P.; Gogotsi, Y.; Simon, P. Synthesis of MAX phase nanofibers and nanoflakes and the resulting MXenes. Adv. Sci. 2022, 10, 2205509. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.; Ali, M.; Ma, X. Screen the thermomechanical and optical properties of the new ductile 314 MAX phase boride Zr3CdB4: A DFT insight. J. Alloys Compd. 2021, 877, 160248. [Google Scholar] [CrossRef]
- Khazaei, M.; Maleki, I.; Koshi, N.; Ranjbar, A.; Miao, N.; Wang, J.; Khaledialidusti, R.; Kühne, T.; Lee, S.; Bhattacharjee, S.; et al. Beyond metals: Theoretical discovery of semiconducting MAX phases and their potential application in thermoelectrics. Phys. Chem. Chem. Phys. PCCP 2024, 26, 18907–18917. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xia, W. MAX phases as nanolaminate materials: Chemical composition, microstructure, synthesis, properties, and applications. Adv. Eng. Mater. 2021, 23, 2001191. [Google Scholar] [CrossRef]
- Fisher, D.J. Mechanical Properties of MAX Phases; Materials Research Foundations: Millersille, PA, USA, 2021. [Google Scholar] [CrossRef]
- Alam, M.; Chowdhury, M.; Khandaker, T.; Hossain, M.; Islam, M.; Islam, M.; Hasan, M. Advancements in MAX phase materials: Structure, properties, and novel applications. RSC Adv. 2024, 14, 26995–27041. [Google Scholar] [CrossRef]
- Tan, Y.; Xia, Y.; Teng, Z.; Chen, C.; Zhou, X.; Zhang, H. Synthesis and enhanced mechanical properties of compositionally complex MAX phases. J. Eur. Ceram. Soc. 2021, 41, 4658–4665. [Google Scholar] [CrossRef]
- Kubitza, N.; Büchner, C.; Sinclair, J.; Snyder, R.; Birkel, C. Extending the chemistry of layered solids and nanosheets: Chemistry and structure of MAX phases, MAB phases and MXenes. ChemPlusChem 2023, 88, e202300214. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, S.; Liu, H.; Zhang, J.; Guo, Z.; Hou, H. First-principles investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A = Al and Si). Comput. Mater. Sci. 2018, 154, 365–370. [Google Scholar] [CrossRef]
- Sokol, M.; Natu, V.; Kota, S.; Barsoum, M. On the chemical diversity of the MAX phases. Trends Chem. 2019, 1, 210–223. [Google Scholar] [CrossRef]
- Ghafar, N.; Markom, A.; Rosol, A.; Zulkipli, N.; Omar, S.; Muhammad, A.; Haris, H.; Saad, I.; Harun, S. Q-switched pulse generation in Erbium-based with niobium aluminium carbide saturable absorber. J. Adv. Res. Micro Nano Eng. 2024, 19, 99–106. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Ramamoorthi, V.; Srinivasan, R. Experimental investigation on powder processing and its flow properties of AlSi10Mg alloy with niobium carbide for additive manufacturing. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 236, 1421–1429. [Google Scholar] [CrossRef]
- Gurgel, M.; De Souza Baêta Júnior, E.; Da Silva Teixeira, R.; Nascimento, G.; De Sant’ Ana Oliveira, S.; Leite, D.; Moreira, L.; Brandão, L.; Paula, A. Microstructure and continuous cooling transformation of an Fe-7.1Al-0.7Mn-0.4C-0.3Nb Alloy. Metals 2022, 12, 1305. [Google Scholar] [CrossRef]
- Molochkova, O.; Petrochenko, E. Structural-phase state and properties of heat and wear resistant cast irons of Cr–Mn–Ni–Ti system additionally alloyed with Al and Nb. Ferr. Metall. Bull. Sci. Tech. Econ. Inf. 2024, 80, 12–20. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, J.; Wen, B.; Zhou, Y.; Chu, L.; Feng, Q.; Hu, C. Determination of new α-312 MAX phases of Zr3InC2 and Hf3InC2. J. Eur. Ceram. Soc. 2023, 43, 7228–7233. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Zhang, Y.; Wang, L.; Zhang, P.; Pan, L.; He, W.; Tian, W.; Sun, Z. The formation mechanism of Ti2InC by pressureless sintering and optimization of synthesis parameters. J. Aust. Ceram. Soc. 2021, 57, 911–917. [Google Scholar] [CrossRef]
- Cannavo, A.; Vacík, J.; Bakardjieva, S.; Kupčík, J.; Lavrentiev, V.; Ceccio, G.; Horak, P.; Němeček, J.; Calcagno, L. Effect of medium energy He+, Ne+ and Ar+ ion irradiation on the Hf-In-C thin film composites. Thin Solid Films. 2022, 743, 139052. [Google Scholar] [CrossRef]
- Sauceda, D.; Singh, P.; Fałkowski, A.; Chen, Y.; Doung, T.; Vazquez, G.; Radovic, M.; Arróyave, R. High-throughput reaction engineering to assess the oxidation stability of MAX phases. npj Comput. Mater. 2021, 7, 6. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Wang, X.H.; Chen, S.Q.; Sun, Z.M. Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 2001, 11, 2335–2339. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization; Wiley: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Emery, A.A.; Wolverton, C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 2017, 4, 170153. [Google Scholar] [CrossRef]
- Ongwen, N.O.; Ogam, E.; Otunga, H.O. Ab initio study of elastic properties of orthorhombic cadmium stannate as a substrate for the manufacture of MEMS devices. Mater. Today Commun. 2021, 26, 101822. [Google Scholar] [CrossRef]
- Avery, P.; Wang, X.; Oses, C.; Gossett, E.; Proserpio, D.M.; Toher, C.; Curtarolo, S.; Zurek, E. Predicting superhard materials via a machine learning informed evolutionary structure search. Npj Comput. Mater. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Thakur, B.; Gong, X.; Dal Corso, A. Thermodynamic properties of rhodium: A first principles study. AIP Adv. 2024, 14, 045229. [Google Scholar] [CrossRef]
- Roknuzzaman, M.; Hadi, M.A.; Ali, M.A.; Hossain, M.M.; Jahan, N.; Uddin, M.M.; Alarco, J.A.; Ostrikov, K. First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study. J. Alloys Compd. 2017, 727, 616–626. [Google Scholar] [CrossRef]
- Ongwen, N.O.; Ogam, E.; Fellah, Z.E.A.; Mageto, M.; Othieno, H.; Otunga, H. Thermal properties and pressure-dependent elastic constants of cadmium stannate as a substrate for MEMS: An ab initio study. Phys. B Condens. Matter 2023, 651, 414599. [Google Scholar] [CrossRef]
- Madsen JK, H.; Carrete, J.; Verstraete, M.J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145. [Google Scholar] [CrossRef]
- Vovk, R.V.; Khadzhai, G.Y.; Prikhna, T.A.; Gevorkyan, E.S.; Kislitsa, M.V.; Soloviev, A.L.; Goulatis, I.L.; Chroneos, A. Charge and heat transfer of the Ti3AlC2 MAX phase. J. Mater. Sci. Mater. Electron. 2018, 29, 11478–11481. [Google Scholar] [CrossRef]
- Mebtouche, H.; Baraka, O.; Yakoubi, A.; Khenata, R.; Tahir, S.; Ahmed, R.; Naqib, S.; Bouhemadou, A.; Omran, S.; Wang, X. First-principles calculations of the structural, electronic, mechanical and thermodynamic properties of MAX phase Mon+1GeCn (n = 1–3) compounds. Mater. Today Commun. 2020, 25, 101420. [Google Scholar] [CrossRef]
- Azzouz-Rached, A.; Hadi, M.; Rached, H.; Hadji, T.; Rached, D.; Bouhemadou, A. Pressure effects on the structural, elastic, magnetic and thermodynamic properties of Mn2AlC and Mn2SiC MAX phases. J. Alloys Compd. 2021, 885, 160998. [Google Scholar] [CrossRef]
- Hadi, M.; Rayhan, M.; Naqib, S.; Chroneos, A.; Islam, A. Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases. Comput. Mater. Sci. 2019, 170, 109144. [Google Scholar] [CrossRef]
- Sun, Z. Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143–166. [Google Scholar] [CrossRef]
- Zapata-Solvas, E.; Hadi, M.; Horlait, D.; Parfitt, D.; Thibaud, A.; Chroneos, A.; Lee, W. Synthesis and physical properties of (Zr1−x,Tix)3AlC2 MAX phases. J. Am. Ceram. Soc. 2017, 100, 3393–3401. [Google Scholar] [CrossRef]
- Gupta, S.; Barsoum, M. On the tribology of the MAX phases and their composites during dry sliding: A review. Wear 2011, 271, 1878–1894. [Google Scholar] [CrossRef]
- Hadi, M.A.; Roknuzzaman, M.; Nasir, M.T.; Monira, U.; Naqib, S.H.; Chroneos, A.; Islam, A.; Alarco, J.A.; Ostrikov, K. Effects of Al substitution by Si in Ti3AlC2 nanolaminate. Sci. Rep. 2021, 11, 3410. [Google Scholar] [CrossRef]
- Ho, J.C.; Hamdeh, H.H.; Barsoum, M.W.; El-Raghy, T. Low temperature heat capacities of Ti3Al1.1C1.8, Ti4AlN3, and Ti3SiC2. J. Appl. Phys. 1999, 86, 3609–3611. [Google Scholar] [CrossRef]
- Available online: https://www.indiamart.com/proddetail/ti3alc2-max-phase-titanium-aluminium-carbide-powder-19902128455.html (accessed on 4 June 2024).
- Khadzhai, G.Y.; Vovk, R.V.; Prichna, T.A.; Gevorkyan, E.S.; Kislitsa, M.V.; Solovjov, A.L. Electrical and thermal conductivity of the Ti3AlC2 MAX phase at low temperatures. Low Temp. Phys. 2018, 44, 451–452. [Google Scholar] [CrossRef]
- Qian, X.-K.; Li, Y.-B.; He, X.-D.; Chen, Y.-X.; Yun, S.-N. Electrical and thermal properties of Ti3AlC2 at high temperature. J. Ceram. Sci. Technol. 2011, 2, 155–158. [Google Scholar] [CrossRef]
- Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Lin, C.; Wen, H.; Lei, L.; Liu, S.; Ma, T.; Fan, B.; Wang, F. Heat generation quantification of high-specific-energy 21700 battery cell using average and variable specific heat capacities. Appl. Therm. Eng. 2020, 184, 116215. [Google Scholar] [CrossRef]
- Mo, Y.; Rulis, P.; Ching, W. Electronic structure and optical conductivities of 20 MAX-phase compounds. Phys. Rev. B 2012, 86, 165122. [Google Scholar] [CrossRef]
- Pazniak, A.; Bazhin, P.; Shchetinin, I.; Kolesnikov, E.; Prokopets, A.; Shplis, N.; Stolin, A.; Kuznetsov, D. Dense Ti3AlC2 based materials obtained by SHS-extrusion and compression methods. Ceram. Int. 2019, 45, 2020–2027. [Google Scholar] [CrossRef]
Sample | |||||
---|---|---|---|---|---|
3.270 (3.332 [30]) | 19.659 (19.690 [30]) | 6.011 (5.909 [30]) | 10,699 (10,288 [30]) | −4.825 | |
3.279 | 19.256 | 5.872 | 11,652 | −4.802 | |
3.077 (3.072 [33]) | 18.746 (18.547 [33]) | 6.092 | 4205 (4240 [33]) | −4.874 | |
3.319 | 19.951 | 6.011 | 6426 | −5.431 | |
3.190 | 24.857 | 7.792 | 10,546 | −13.90 |
Sample | |||||
---|---|---|---|---|---|
332.1 (347 [30]) | 75.9 (77 [30]) | 73.9 (80 [30]) | 284.7 (291 [30]) | 117.8 (127 [30]) | |
340.7 | 92.9 | 116.9 | 280.6 | 109.9 | |
342.9 (356.8 [10]) | 69.8 (70.2 [10]) | 73.4 (69.2 [10]) | 285.2 (329.7 [10]) | 113.2 (139.8 [10]) | |
307.1 | 82.6 | 128.4 | 248.3 | 94.7 | |
337.1 | 68.2 | 107.3 | 298.3 | 143.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruqi, A.B. Engineering the Mechanics and Thermodynamics of Ti3AlC2, Hf3AlC2, Hf3GaC2, (ZrHf)3AlC2, and (ZrHf)4AlN3 MAX Phases via the Ab Initio Method. Crystals 2025, 15, 87. https://doi.org/10.3390/cryst15010087
Alruqi AB. Engineering the Mechanics and Thermodynamics of Ti3AlC2, Hf3AlC2, Hf3GaC2, (ZrHf)3AlC2, and (ZrHf)4AlN3 MAX Phases via the Ab Initio Method. Crystals. 2025; 15(1):87. https://doi.org/10.3390/cryst15010087
Chicago/Turabian StyleAlruqi, Adel Bandar. 2025. "Engineering the Mechanics and Thermodynamics of Ti3AlC2, Hf3AlC2, Hf3GaC2, (ZrHf)3AlC2, and (ZrHf)4AlN3 MAX Phases via the Ab Initio Method" Crystals 15, no. 1: 87. https://doi.org/10.3390/cryst15010087
APA StyleAlruqi, A. B. (2025). Engineering the Mechanics and Thermodynamics of Ti3AlC2, Hf3AlC2, Hf3GaC2, (ZrHf)3AlC2, and (ZrHf)4AlN3 MAX Phases via the Ab Initio Method. Crystals, 15(1), 87. https://doi.org/10.3390/cryst15010087