Impact of Diffraction Data Volume on Data Quality in Serial Crystallography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Data Collection
2.3. Data Processing
2.4. Structure Determination
3. Results
3.1. Processing of Lysozyme SSX Data Using Varying Volumes of Diffraction Images
3.2. Data Processing Statistics for Glucose Isomerase Datasets
3.3. Structure Determination of Lysozyme Datasets
3.4. Structure Determination of Glucose Isomerase Datasets
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SX | serial crystallography |
SSX | serial synchrotron crystallography |
SFX | serial femtosecond crystallography |
MX | macromolecular crystallography |
GI | glucose isomerase |
SNR | signal-to-noise ratio |
CC | correlation coefficient |
References
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Caleman, C.; Timneanu, N. Diffraction before destruction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130313. [Google Scholar] [CrossRef] [PubMed]
- Schriber, E.A.; Paley, D.W.; Bolotovsky, R.; Rosenberg, D.J.; Sierra, R.G.; Aquila, A.; Mendez, D.; Poitevin, F.; Blaschke, J.P.; Bhowmick, A.; et al. Chemical crystallography by serial femtosecond X-ray diffraction. Nature 2022, 601, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Nass, K.; Gorel, A.; Abdullah, M.M.; Martin, A.V.; Kloos, M.; Marinelli, A.; Aquila, A.; Barends, T.R.M.; Decker, F.-J.; Bruce Doak, R.; et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 2020, 11, 1814. [Google Scholar] [CrossRef]
- Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.M.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P.; Steinbrener, J.; Shoeman, R.L.; et al. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography. Science 2012, 337, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Weinert, T.; Olieric, N.; Cheng, R.; Brunle, S.; James, D.; Ozerov, D.; Gashi, D.; Vera, L.; Marsh, M.; Jaeger, K.; et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat. Commun. 2017, 8, 542. [Google Scholar] [CrossRef]
- Barends, T.R.M.; Stauch, B.; Cherezov, V.; Schlichting, I. Serial femtosecond crystallography. Nat. Rev. Methods Primers 2022, 2, 59. [Google Scholar] [CrossRef]
- Martin-Garcia, J.M.; Conrad, C.E.; Coe, J.; Roy-Chowdhury, S.; Fromme, P. Serial femtosecond crystallography: A revolution in structural biology. Arch. Biochem. Biophys. 2016, 602, 32–47. [Google Scholar] [CrossRef]
- Nam, K.H. Comparative Analysis of Room Temperature Structures Determined by Macromolecular and Serial Crystallography. Crystals 2024, 14, 276. [Google Scholar] [CrossRef]
- Nam, K.H. Guide to serial synchrotron crystallography. Curr. Res. Struct. Biol. 2024, 7, 100131. [Google Scholar] [CrossRef]
- Pegg, D.E. Principles of Cryopreservation. In Cryopreservation and Freeze-Drying Protocols; Methods in Molecular Biology; Springer: Humana Totowa, NJ, USA, 2007; pp. 39–57. [Google Scholar]
- Tenboer, J.; Basu, S.; Zatsepin, N.; Pande, K.; Milathianaki, D.; Frank, M.; Hunter, M.; Boutet, S.; Williams, G.J.; Koglin, J.E.; et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 2014, 346, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Kupitz, C.; Basu, S.; Grotjohann, I.; Fromme, R.; Zatsepin, N.A.; Rendek, K.N.; Hunter, M.S.; Shoeman, R.L.; White, T.A.; Wang, D.; et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 2014, 513, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Hekstra, D.R. Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics. Annu. Rev. Biophys. 2023, 52, 255–274. [Google Scholar] [CrossRef] [PubMed]
- Westenhoff, S.; Meszaros, P.; Schmidt, M. Protein motions visualized by femtosecond time-resolved crystallography: The case of photosensory vs photosynthetic proteins. Curr. Opin. Struct. Biol. 2022, 77, 102481. [Google Scholar] [CrossRef]
- Stagno, J.R.; Liu, Y.; Bhandari, Y.R.; Conrad, C.E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D.R.; et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 2016, 541, 242–246. [Google Scholar] [CrossRef]
- Olmos, J.L., Jr.; Pandey, S.; Martin-Garcia, J.M.; Calvey, G.; Katz, A.; Knoska, J.; Kupitz, C.; Hunter, M.S.; Liang, M.; Oberthuer, D.; et al. Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography. BMC Biol. 2018, 16, 59. [Google Scholar] [CrossRef]
- Park, J.; Nam, K.H. Recent chemical mixing devices for time-resolved serial femtosecond crystallography. TrAC Trends Anal. Chem. 2024, 172, 117554. [Google Scholar] [CrossRef]
- Park, J.; Nam, K.H. Experimental approaches for time-resolved serial femtosecond crystallography at PAL-XFEL. In Time-Resolved Methods in Structural Biology; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2024; pp. 131–160. [Google Scholar]
- Powell, H.R. A beginner’s guide to X-ray data processing. Biochemist 2021, 43, 46–50. [Google Scholar] [CrossRef]
- Maveyraud, L.; Mourey, L. Protein X-ray Crystallography and Drug Discovery. Molecules 2020, 25, 1030. [Google Scholar] [CrossRef]
- Pusey, M.L.; Liu, Z.-J.; Tempel, W.; Praissman, J.; Lin, D.; Wang, B.-C.; Gavira, J.A.; Ng, J.D. Life in the fast lane for protein crystallization and X-ray crystallography. Prog. Biophys. Mol. Biol. 2005, 88, 359–386. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Dauter, Z. Data-collection strategies. Acta Crystallogr. D Biol. 1999, 55, 1703–1717. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.R. An introduction to data reduction: Space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. 2011, 67, 282–292. [Google Scholar] [CrossRef] [PubMed]
- White, T.A.; Kirian, R.A.; Martin, A.V.; Aquila, A.; Nass, K.; Barty, A.; Chapman, H.N. CrystFEL: A software suite for snapshot serial crystallography. J. Appl. Crystallogr. 2012, 45, 335–341. [Google Scholar] [CrossRef]
- Brehm, W.; Diederichs, K. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. D Biol. 2013, 70, 101–109. [Google Scholar] [CrossRef]
- Chavas, L.M.G.; Gumprecht, L.; Chapman, H.N. Possibilities for serial femtosecond crystallography sample delivery at future light sources. Struct. Dyn. 2015, 2, 041709. [Google Scholar] [CrossRef]
- Nam, K.H. Hit and Indexing Rate in Serial Crystallography: Incomparable Statistics. Front. Mol. Biosci. 2022, 9, 858815. [Google Scholar] [CrossRef]
- DePonte, D.P.; Weierstall, U.; Schmidt, K.; Warner, J.; Starodub, D.; Spence, J.C.H.; Doak, R.B. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 2008, 41, 195505. [Google Scholar] [CrossRef]
- Weierstall, U.; Spence, J.C.H.; Doak, R.B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 2012, 83, 035108. [Google Scholar] [CrossRef]
- Weierstall, U.; James, D.; Wang, C.; White, T.A.; Wang, D.; Liu, W.; Spence, J.C.; Bruce Doak, R.; Nelson, G.; Fromme, P.; et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 2014, 5, 3309. [Google Scholar] [CrossRef]
- Hunter, M.S.; Segelke, B.; Messerschmidt, M.; Williams, G.J.; Zatsepin, N.A.; Barty, A.; Benner, W.H.; Carlson, D.B.; Coleman, M.; Graf, A.; et al. Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci. Rep. 2014, 4, 6026. [Google Scholar] [CrossRef] [PubMed]
- Grünbein, M.L.; Nass Kovacs, G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr. D Biol. Crystallogr. 2019, 75, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.Z.; Zhang, B.; Yan, E.K.; Sun, B.; Wang, Z.J.; He, J.H.; Yin, D.C. A guide to sample delivery systems for serial crystallography. FEBS J. 2019, 286, 4402–4417. [Google Scholar] [CrossRef] [PubMed]
- Martiel, I.; Muller-Werkmeister, H.M.; Cohen, A.E. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr. D Struct. Biol. 2019, 75, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Fuller, F.D.; Gul, S.; Chatterjee, R.; Burgie, E.S.; Young, I.D.; Lebrette, H.; Srinivas, V.; Brewster, A.S.; Michels-Clark, T.; Clinger, J.A.; et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods 2017, 14, 4461. [Google Scholar] [CrossRef]
- Calvey, G.D.; Katz, A.M.; Zielinski, K.A.; Dzikovski, B.; Pollack, L. Characterizing Enzyme Reactions in Microcrystals for Effective Mix-and-Inject Experiments using X-ray Free-Electron Lasers. Anal. Chem. 2020, 92, 13864–13870. [Google Scholar] [CrossRef]
- Kirian, R.A.; Wang, X.; Weierstall, U.; Schmidt, K.E.; Spence, J.C.H.; Hunter, M.; Fromme, P.; White, T.; Chapman, H.N.; Holton, J. Femtosecond protein nanocrystallography—Data analysis methods. Optics Express 2010, 18, 5713–5723. [Google Scholar] [CrossRef]
- Johansson, L.C.; Stauch, B.; Ishchenko, A.; Cherezov, V. A Bright Future for Serial Femtosecond Crystallography with XFELs. Trends Biochem. Sci. 2017, 42, 749–762. [Google Scholar] [CrossRef]
- Lee, K.; Lee, D.; Park, J.; Lee, J.-L.; Chung, W.K.; Cho, Y.; Nam, K.H. Upgraded Combined Inject-and-Transfer System for Serial Femtosecond Crystallography. Appl. Sci. 2022, 12, 9125. [Google Scholar] [CrossRef]
- Nam, K.H. Real-time monitoring of large-scale crystal growth using batch crystallization for serial crystallography. J. Cryst. Growth 2023, 614, 127219. [Google Scholar] [CrossRef]
- Park, S.Y.; Ha, S.C.; Kim, Y.G. The Protein Crystallography Beamlines at the Pohang Light Source II. Biodesign 2017, 5, 30–34. [Google Scholar]
- Park, S.Y.; Nam, K.H. Sample delivery using viscous media, a syringe and a syringe pump for serial crystallography. J. Synchrotron Radiat. 2019, 26, 1815–1819. [Google Scholar] [CrossRef] [PubMed]
- Barty, A.; Kirian, R.A.; Maia, F.R.; Hantke, M.; Yoon, C.H.; White, T.A.; Chapman, H. Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 2014, 47, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- White, T.A.; Mariani, V.; Brehm, W.; Yefanov, O.; Barty, A.; Beyerlein, K.R.; Chervinskii, F.; Galli, L.; Gati, C.; Nakane, T.; et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 2016, 49, 680–689. [Google Scholar] [CrossRef]
- Gevorkov, Y.; Yefanov, O.; Barty, A.; White, T.A.; Mariani, V.; Brehm, W.; Tolstikova, A.; Grigat, R.R.; Chapman, H.N. XGANDALF—Extended gradient descent algorithm for lattice finding. Acta Crystallogr. A Found. Adv. 2019, 75, 694–704. [Google Scholar] [CrossRef]
- Yefanov, O.; Mariani, V.; Gati, C.; White, T.A.; Chapman, H.N.; Barty, A. Accurate determination of segmented X-ray detector geometry. Opt. Express 2015, 23, 28459–28470. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, H.; Eo, C.; Cho, Y.; Nam, K.H. Fixed-target serial synchrotron crystallography using nylon mesh and enclosed film-based sample holder. Crystals 2020, 10, 803. [Google Scholar] [CrossRef]
- Maia, F.R.N.C. The Coherent X-ray Imaging Data Bank. Nat. Methods 2012, 9, 854–855. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef]
- Nam, K.H.; Cho, Y. Stable sample delivery in a viscous medium via a polyimide-based single-channel microfluidic chip for serial crystallography. J. Appl. Crystallogr. 2021, 54, 1081–1087. [Google Scholar] [CrossRef]
- Lee, D.; Baek, S.; Park, J.; Lee, K.; Kim, J.; Lee, S.J.; Chung, W.K.; Lee, J.L.; Cho, Y.; Nam, K.H. Nylon mesh-based sample holder for fixed-target serial femtosecond crystallography. Sci. Rep. 2019, 9, 6971. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, D60, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Evans, P. Resolving Some Old Problems in Protein Crystallography. Science 2012, 336, 986–987. [Google Scholar] [CrossRef]
- Xu, H.; Lebrette, H.; Yang, T.; Srinivas, V.; Hovmöller, S.; Högbom, M.; Zou, X. A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals. Structure 2018, 26, 667–675.e663. [Google Scholar] [CrossRef]
- Wlodawer, A.; Minor, W.; Dauter, Z.; Jaskolski, M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 2013, 280, 5705–5736. [Google Scholar] [CrossRef]
- Rondeau, J.-M.; Schreuder, H. Protein Crystallography and Drug Discovery. In The Practice of Medicinal Chemistry; Academic Press: Cambridge, MA, USA, 2015; pp. 511–537. [Google Scholar]
- de Sá Ribeiro, F.; Lima, L.M.T.R. Linking B-factor and temperature-induced conformational transition. Biophys. Chem. 2023, 298, 107027. [Google Scholar] [CrossRef]
- Mlynek, G.; Djinović-Carugo, K.; Carugo, O. B-Factor Rescaling for Protein Crystal Structure Analyses. Crystals 2024, 14, 443. [Google Scholar] [CrossRef]
Data Name | Lys-2000 | Lys-3000 | Lys-5000 | Lys-10000 | Lys-15000 | Lys-20000 | Lys-25000 | Lys-All |
---|---|---|---|---|---|---|---|---|
No. of images | 2000 | 3000 | 5000 | 10,000 | 15,000 | 20,000 | 25,000 | 26,432 |
Resolution (Å) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) | 80–1.45 (1.50–1.45) |
Unit cell (Å) | ||||||||
a | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 |
b | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 | 78.98 |
c | 38.24 | 38.24 | 38.24 | 38.24 | 38.24 | 38.24 | 38.24 | 38.24 |
Number of reflections | 1,048,602 (30,142) | 1,620,575 (46,465) | 2,721,401 (78,165) | 5,610,234 (161,211) | 8,912,635 (256,692) | 12,960,884 (373,287) | 15,163,328 (435,665) | 15,752,048 (452,449) |
Number of unique reflections | 47.3 (14.0) | 73.1 (21.6) | 122.7 (36.3) | 252.9 (74.9) | 401.7 (119.2) | 584.2 (173.4) | 683.5 (202.4) | 710.0 (210.1) |
Reflection | 22,177 (2148) | 22,182 (2151) | 22,185 (2153) | 22,185 (2153) | 22,185 (2153) | 22,185 (2153) | 22,185 (2153) | 22,185 (2153) |
Completeness (%) | 99.96 (99.77) | 99.99 (99.91) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) |
SNR | 3.12 (0.59) | 3.72 (0.69) | 4.72 (0.89) | 6.56 (1.20) | 7.55 (1.22) | 8.37 (1.18) | 9.34 (1.29) | 9.6 (1.33) |
Rsplit (%) a | 23.86 (199.67) | 19.79 (162.79) | 14.86 (124.95) | 10.74 (87.7) | 8.82 (87.05) | 7.50 (91.03) | 6.79 (82.69) | 6.59 (80.09) |
CC1/2 | 0.9142 (0.1824) | 0.9422 (0.2304) | 0.9669 (0.3422) | 0.9818 (0.4757) | 0.9884 (0.4961) | 0.9922 (0.4841) | 0.9935 (0.5284) | 0.9939 (0.5428) |
CC* | 0.9773 (0.5555) | 0.9850 (0.6120) | 0.9915 (0.7141) | 0.9954 (0.8029) | 0.9970 (0.8143) | 0.9980 (0.8077) | 0.9983 (0.8315) | 0.9984 (0.8388) |
Wilson B-factor (Å2) | 24.66 | 24.71 | 24.65 | 24.90 | 25.35 | 25.86 | 25.99 | 26.00 |
Data Name | GI-5000 | GI-10000 | GI-15000 | GI-20000 | GI-25000 | GI-30000 | GI-35000 | GI-All |
---|---|---|---|---|---|---|---|---|
Diffraction images | 5000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000 | 35,000 | 39,657 |
Resolution (Å) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) | 72.46–1.60 (1.65–1.60) |
Unit cell (Å) | ||||||||
a | 64.45 | 64.45 | 64.45 | 64.45 | 64.45 | 64.45 | 64.45 | 64.45 |
b | 100.26 | 100.26 | 100.26 | 100.26 | 100.26 | 100.26 | 100.26 | 100.26 |
c | 103.54 | 103.54 | 103.54 | 103.54 | 103.54 | 103.54 | 103.54 | 103.54 |
Number of reflections | 8,677,505 (603,600) | 23,815,611 (1,672,804) | 36,543,752 (2,570,291) | 56,945,902 (4,010,249) | 68,498,647 (4,815,125) | 83,098,370 (5,837,510) | 101,251,911 (7,126,384) | 116,012,239 (8,167,934) |
Number of unique reflections | 133.6 (93.7) | 366.8 (259.7) | 562.8 (399.1) | 877.1 (622.6) | 1055.0 (747.6) | 1279.9 (906.3) | 1559.4 (1106.4) | 1786.8 (1268.1) |
Reflection | 64,928 (6441) | 64,928 (6441) | 64,928 (6441) | 64,928 (6441) | 64,928 (6441) | 64,928 (6441) | 64,928 (6441) | 64,928 (6441) |
Completeness (%) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) | 100.00 (100.00) |
SNR | 1.35 (0.50) | 1.75 (0.76) | 2.12 (1.03) | 2.61 (1.42) | 2.77 (1.48) | 2.90 (1.50) | 3.02 (1.50) | 3.12 (1.52) |
Rsplit (%) | 59.2 (190.43) | 45.36 (125.81) | 38.88 (92.67) | 32.31 (66.07) | 29.89 (63.24) | 28.47 (63.59) | 27.07 (65.09) | 26.09 (64.76) |
CC1/2 | 0.5877 (0.3153) | 0.7567 (0.4467) | 0.8136 (0.5422) | 0.8543 (0.6584) | 0.8741 (0.6737) | 0.8854 (0.6649) | 0.8979 (0.6384) | 0.9060 (0.6385) |
CC* | 0.8604 (0.6924) | 0.9281 (0.7858) | 0.9472 (0.8385) | 0.9599 (0.8910) | 0.9658 (0.8972) | 0.9691 (0.8937) | 0.9727 (0.8828) | 0.9750 (0.8828) |
Wilson B-factor (Å2) | 20.03 | 19.55 | 19.46 | 19.18 | 19.34 | 19.45 | 19.58 | 19.63 |
Dataset | Lys-2000 | Lys-3000 | Lys-5000 | Lys-10000 | Lys-15000 | Lys-20000 | Lys-25000 | Lys-All |
---|---|---|---|---|---|---|---|---|
MR phasing | ||||||||
Top LLG | 8101.55 | 8805.23 | 9519.74 | 10,329.20 | 10,411.67 | 10,442.43 | 10,588.95 | 10,632.07 |
Top TFZ | 64 | 66.3 | 67.7 | 69.7 | 69.4 | 69.3 | 69.6 | 69.7 |
Structure refinement | ||||||||
Resolution (Å) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) | 55.85–1.45 (1.49–1.45) |
Rwork | 0.2060 (0.4060) | 0.1970 (0.3958) | 0.1901 (0.3782) | 0.1828 (0.3476) | 0.1809 (0.3471) | 0.1806 (0.3549) | 0.1782 (0.3394) | 0.1789 (0.3415) |
Rfree | 0.2281 (0.4358) | 0.2152 (0.4616) | 0.2102 (0.3677) | 0.2012 (0.3462) | 0.1911 (0.3908) | 0.1991 (0.3719) | 0.1936 (0.3456) | 0.1939 (0.3756) |
No. of atoms | ||||||||
Protein | 1001 | 1001 | 1001 | 1001 | 1001 | 1001 | 1001 | 1001 |
Water | 89 | 89 | 91 | 91 | 88 | 81 | 93 | 89 |
RMSD | ||||||||
Bond (Å) | 0.006 | 0.006 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
Angle (°) | 0.901 | 0.863 | 0.845 | 0.854 | 0.867 | 0.840 | 0.851 | 0.811 |
B-factor (Å2) | ||||||||
Protein | 25.77 | 25.78 | 25.60 | 25.60 | 26.12 | 26.39 | 26.59 | 26.35 |
Water | 35.63 | 36.26 | 35.53 | 36.28 | 35.42 | 36.36 | 37.36 | 36.68 |
Ramachandran plot (%) | ||||||||
Favored | 99.21 | 98.43 | 98.43 | 98.43 | 98.43 | 99.21 | 99.21 | 98.43 |
Allowed | 0.79 | 1.57 | 1.57 | 1.57 | 1.57 | 0.79 | 0.79 | 1.57 |
Outlier | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
GI-5000 | GI-10000 | GI-15000 | GI-20000 | GI-25000 | GI-30000 | GI-35000 | GI-All | |
---|---|---|---|---|---|---|---|---|
MR phasing | ||||||||
Top LLG | 11,961.22 | 15,521.82 | 18,945.61 | 22,264.00 | 23,582.31 | 24,522.71 | 25,337.26 | 26,028.86 |
Top TFZ | 64.8 | 70.1 | 73.5 | 75.5 | 75.8 | 75.9 | 76.1 | 76.3 |
Structure refinement | ||||||||
Resolution (Å) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) | 72.03–1.60 (1.64–1.60) |
Rwork | 0.2625 (0.3578) | 0.2554 (0.3434) | 0.2457 (0.3361) | 0.2437 (0.3056) | 0.2351 (0.3151) | 0.227 (0.3189) | 0.2214 (0.3106) | 0.2161 (0.3122) |
Rfree | 0.2944 (0.3848) | 0.2755 (0.4028) | 0.2591 (0.3633) | 0.2587 (0.3138) | 0.2603 (0.3687) | 0.2501 (0.4023) | 0.2442 (0.3376) | 0.2396 (0.3525) |
No. of atoms | ||||||||
Protein | 3041 | 3041 | 3041 | 3041 | 3041 | 3041 | 3041 | 3041 |
Water | 292 | 297 | 296 | 303 | 300 | 315 | 333 | 335 |
RMSD | ||||||||
Bond (Å) | 0.008 | 0.008 | 0.008 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 |
Angle (°) | 0.990 | 0.983 | 0.980 | 0.933 | 0.932 | 0.922 | 0.932 | 0.923 |
B-factor (Å2) | ||||||||
Protein | 17.7 | 16.97 | 16.44 | 16.75 | 16.60 | 17.17 | 17.12 | 16.53 |
Water | 26.40 | 25.63 | 25.50 | 25.96 | 26.65 | 27.81 | 28.46 | 27.98 |
Mg2+ | 12.89 | 11.92 | 15.18 | 12.71 | 13.23 | 13.26 | 13.71 | 13.15 |
Ramachandran plot (%) | ||||||||
Favored | 96.34 | 96.34 | 95.82 | 95.82 | 95.82 | 95.56 | 96.08 | 96.08 |
Allowed | 3.39 | 3.39 | 3.92 | 3.92 | 3.92 | 4.18 | 3.66 | 3.66 |
Outlier | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, K.H. Impact of Diffraction Data Volume on Data Quality in Serial Crystallography. Crystals 2025, 15, 104. https://doi.org/10.3390/cryst15020104
Nam KH. Impact of Diffraction Data Volume on Data Quality in Serial Crystallography. Crystals. 2025; 15(2):104. https://doi.org/10.3390/cryst15020104
Chicago/Turabian StyleNam, Ki Hyun. 2025. "Impact of Diffraction Data Volume on Data Quality in Serial Crystallography" Crystals 15, no. 2: 104. https://doi.org/10.3390/cryst15020104
APA StyleNam, K. H. (2025). Impact of Diffraction Data Volume on Data Quality in Serial Crystallography. Crystals, 15(2), 104. https://doi.org/10.3390/cryst15020104