Particle Swarm Optimization–Long Short-Term Memory-Based Dynamic Prediction Model of Single-Crystal Furnace Temperature and Heating Power
Abstract
:1. Introduction
- Identification and selection of key parameters: Spearman’s rank correlation coefficients are used to identify the key parameters most strongly correlated with temperature and heating power, which are then selected as inputs for the prediction model.
- Design of the PSO-LSTM prediction model: A temperature and heating power prediction model based on PSO and LSTM is proposed. PSO optimizes the hyperparameters of the LSTM model, significantly enhancing prediction accuracy and providing an effective solution for forecasting the future trends of temperature and heating power during the growth process of Czochralski silicon single crystals.
- Development of a real-time monitoring and control platform: A real-time monitoring platform for silicon single-crystal production is proposed. It can update key parameter changes in real-time and provide fault alerts for abnormal parameter fluctuations. The platform provides support for the monitoring and control of the production process, aiding in the enhancement of automation and intelligence in crystal growth.
2. Foundation for the Construction of the Prediction Model
3. Characteristic Parameter Identification and Processing
3.1. Spearman-Based Parametric Correlation Analysis
3.2. Data Standardization
4. Theory of LSTM and PSO Optimization Methods
4.1. Theoretical Foundation of LSTM Models
4.2. PSO-Based Hyperparameter Optimization
5. PSO-LSTM Prediction, Verification, and Integration of the Monitoring System
5.1. PSO-LSTM-Based Prediction
5.2. Verification of the Superiority of PSO-LSTM
5.3. Experimental Verification
5.4. Predictive Monitoring System Development and Integration
6. Summary
6.1. Conclusions
- The correlation between each characteristic parameter and temperature and heating power is analyzed using Spearman’s rank correlation, and the characteristic parameters with the highest correlation with temperature and heating power are determined;
- The PSO-LSTM model was established to predict temperature and heating power, and the model showed high accuracy in predicting both variables;
- Taking MSE minimization as an indicator, the PSO-LSTM model has been proven to have the highest prediction accuracy, which verifies the superiority of the PSO-LSTM model in predicting this task;
- A real-time silicon single-crystal production monitoring platform is proposed, which can dynamically update key parameters and provide fault alarms. In the future, this platform will realize the comprehensive monitoring, prediction, and control of the silicon single-crystal production process and promote upgrading production intelligence and automation.
6.2. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Yu, X.; Hu, D.; Yuan, S.; Chen, H.; Wu, P.; Wang, L.; Yang, D. Crystal Growth and Resistivity Modulation of N-Type Phosphorus-Doped Cast Mono-like Silicon. Sol. Energy 2022, 236, 294–300. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Rahim, N.A.A.; Rahim, N.A.; Selvaraj, J.A.L. Progress in Solar PV Technology: Research and Achievement. Renew. Sustain. Energy Rev. 2013, 20, 443–461. [Google Scholar] [CrossRef]
- Tomaszewski, P.E. Jan Czochralski—Father of the Czochralski method. J. Cryst. Growth 2002, 236, 1–4. [Google Scholar] [CrossRef]
- Komperod, M.; Lie, B. Empirical Modeling of Heating Element Power for the Czochralski Crystallization Process. Model. Identif. Control 2010, 31, 19–34. [Google Scholar] [CrossRef]
- Nguyen, T.-H.-T.; Chen, J.-C. Numerical Study of Continuous Czochralski (CCz) Silicon Single Crystal Growth in a Double-Side Heater. J. Cryst. Growth 2024, 626, 127488. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, Y.; Ma, W.; Lv, G.; Tan, M.; Li, X.; Li, S.; Wan, X.; Zhan, S.; Zeng, Y.; et al. Crystal Surface Heat Transfer during the Growth of 300mm Monocrystalline Silicon by the Czochralski Process. Int. J. Heat Mass Transf. 2025, 236, 126259. [Google Scholar] [CrossRef]
- Enders-Seidlitz, A.; Pal, J.; Dadzis, K. Development and Validation of a Thermal Simulation for the Czochralski Crystal Growth Process Using Model Experiments. J. Cryst. Growth 2022, 593, 126750. [Google Scholar] [CrossRef]
- Kirpo, M. Global Simulation of the Czochralski Silicon Crystal Growth in ANSYS FLUENT. J. Cryst. Growth 2013, 371, 60–69. [Google Scholar] [CrossRef]
- Enders-Seidlitz, A.; Pal, J.; Dadzis, K. Model Experiments for Czochralski Crystal Growth Processes Using Inductive and Resistive Heating. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1223, 012003. [Google Scholar] [CrossRef]
- Ren, J.-C.; Liu, D.; Wan, Y. Modeling and Application of Czochralski Silicon Single Crystal Growth Process Using Hybrid Model of Data-Driven and Mechanism-Based Methodologies. J. Process Control. 2021, 104, 74–85. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Gao, D.; Zhao, Y.; Lin, G.; Peng, X. Research on Diameter Prediction of Silicon Single Crystal Based on Data Driven. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15–19 July 2021; pp. 1184–1188. [Google Scholar]
- Wan, Y.; Liu, D.; Liu, C.-C.; Ren, J.-C. Data-Driven Model Predictive Control of Cz Silicon Single Crystal Growth Process With V/G Value Soft Measurement Model. IEEE Trans. Semicond. Manuf. 2021, 34, 420–428. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Yan, X. Diameter Prediction of Silicon Ingots in the Czochralski Process Based on a Hybrid Deep Learning Model. Crystals 2023, 13, 36. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, X.; Tian, Z.; Jiang, B.; Zhang, H.; Zhang, W. Bi-LSTM-Based Dynamic Prediction Model for Pulling Speed of Czochralski Single-Crystal Furnace. J. Comput. Inf. Sci. Eng. 2023, 23, 041010. [Google Scholar] [CrossRef]
- Wang, K.; Koch, H.; Trempa, M.; Kranert, C.; Friedrich, J.; Derby, J.J. Physically-Based, Lumped-Parameter Models for the Prediction of Oxygen Concentration during Czochralski Growth of Silicon Crystals. J. Cryst. Growth 2021, 576, 126384. [Google Scholar] [CrossRef]
- Kutsukake, K.; Nagai, Y.; Horikawa, T.; Banba, H. Real-Time Prediction of Interstitial Oxygen Concentration in Czochralski Silicon Using Machine Learning. Appl. Phys. Express 2020, 13, 125502. [Google Scholar] [CrossRef]
- Xiang, Z.; Yan, J.; Demir, I. A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Z. Deep-Convolution-Based LSTM Network for Remaining Useful Life Prediction. IEEE Trans. Ind. Inform. 2021, 17, 1658–1667. [Google Scholar] [CrossRef]
- Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-Level Particle Swarm Optimized Hyperparameters of Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [Google Scholar] [CrossRef]
- Shaikh, M.A.H.; Barbé, K. Wiener–Hammerstein System Identification: A Fast Approach Through Spearman Correlation. IEEE Trans. Instrum. Meas. 2019, 68, 1628–1636. [Google Scholar] [CrossRef]
- Henderi, H.; Wahyuningsih, T.; Rahwanto, E. Comparison of Min-Max Normalization and Z-Score Normalization in the K-Nearest Neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Int. J. Inform. Inf. Syst. 2021, 4, 13–20. [Google Scholar] [CrossRef]
- Jia, X.; Ji, Q.; Han, L.; Liu, Y.; Han, G.; Lin, X. Prediction of Sea Surface Temperature in the East China Sea Based on LSTM Neural Network. Remote Sens. 2022, 14, 3300. [Google Scholar] [CrossRef]
- Song, X.; Liu, Y.; Xue, L.; Wang, J.; Zhang, J.; Wang, J.; Jiang, L.; Cheng, Z. Time-Series Well Performance Prediction Based on Long Short-Term Memory (LSTM) Neural Network Model. J. Pet. Sci. Eng. 2020, 186, 106682. [Google Scholar] [CrossRef]
- Wang, J.Q.; Du, Y.; Wang, J. LSTM Based Long-Term Energy Consumption Prediction with Periodicity. Energy 2020, 197, 117197. [Google Scholar] [CrossRef]
- Gundu, V.; Simon, S.P. PSO–LSTM for Short Term Forecast of Heterogeneous Time Series Electricity Price Signals. J. Ambient. Intell. Hum. Comput. 2021, 12, 2375–2385. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle Swarm Optimization Algorithm: An Overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yin, Y.; Wang, D.; Zhu, Q.; Yang, G.; Chen, X.; Liu, X.; Liu, Y. Research on Intelligent Design and Visualization of Gas Extraction Drilling Based on PSO-LSTM. Processes 2024, 12, 1691. [Google Scholar] [CrossRef]
- Tang, G.; Sheng, J.; Wang, D.; Men, S. Continuous Estimation of Human Upper Limb Joint Angles by Using PSO-LSTM Model. IEEE Access 2021, 9, 17986–17997. [Google Scholar] [CrossRef]
- Ge, W.; Wang, X. PSO-LSTM-Markov Coupled Photovoltaic Power Prediction Based on Sunny, Cloudy and Rainy Weather. J. Electr. Eng. Technol. 2024, 1–11. [Google Scholar] [CrossRef]
- Ren, X.; Liu, S.; Yu, X.; Dong, X. A Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on PSO-LSTM. Energy 2021, 234, 121236. [Google Scholar] [CrossRef]
- Zhou, Y.; Teng, Z.; Chi, L.; Liu, X. Buried Pipeline Collapse Dynamic Evolution Processes and Their Settlement Prediction Based on PSO-LSTM. Appl. Sci. 2024, 14, 393. [Google Scholar] [CrossRef]
Identifier | Parameter Name | Identifier | Parameter Name | Identifier | Parameter Name |
---|---|---|---|---|---|
A1 | Temperature | A7 | Crystal length | A13 | Heating current |
A2 | Crystal lifting speed | A8 | The whole bar pulling speed | A14 | Heating voltage |
A3 | Main chamber pressure | A9 | Crystal diameter | A15 | Heating power |
A4 | Crucible lifting speed | A10 | Fusion lumens | A16 | Crystal weight |
A5 | Crystal lifting position | A11 | Secondary chamber pressure | ||
A6 | Crucible lifting position | A12 | Furnace wall thermometry |
Time | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
11-09 22:01 | 1348 | 1.17 | 1530.14 | 0.158 | 1.8 | −39.46 | 1.8 | 1.154 |
11-09 22:02 | 1347.6 | 1.07 | 1530.14 | 0.136 | 2.9 | −39.3 | 2.9 | 1.154 |
11-09 22:03 | 1347.3 | 1.19 | 1529.07 | 0.155 | 4 | −39.15 | 4 | 1.146 |
11-09 22:04 | 1347 | 1.18 | 1532.3 | 0.166 | 5.2 | −38.98 | 5.2 | 1.159 |
11-09 22:05 | 1346.7 | 1.38 | 1529.07 | 0.181 | 6.5 | −38.8 | 6.5 | 1.184 |
11-09 22:06 | 1346.5 | 1.36 | 1530.14 | 0.186 | 7.5 | −38.67 | 7.5 | 1.193 |
11-09 22:07 | 1346.2 | 1.33 | 1531.22 | 0.18 | 9.1 | −38.45 | 9.1 | 1.206 |
11-09 22:08 | 1345.9 | 1.39 | 1531.22 | 0.185 | 10.5 | −38.26 | 10.5 | 1.232 |
… | … | … | … | … | … | … | … | … |
Time | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
11-09 22:01 | 228.1 | 8.33 | 1391.53 | 1261.1 | 1.243 | 34.74 | 43.18 | 5.81 |
11-09 22:02 | 228.1 | 8.07 | 1415.94 | 1260.2 | 1.247 | 34.72 | 43.3 | 5.93 |
11-09 22:03 | 228.3 | 7.78 | 1403.74 | 1259.1 | 1.244 | 34.74 | 43.22 | 6.04 |
11-09 22:04 | 228.3 | 7.52 | 1407.8 | 1258.1 | 1.246 | 34.72 | 43.26 | 6.13 |
11-09 22:05 | 228.8 | 7.25 | 1415.94 | 1257.2 | 1.245 | 34.73 | 43.24 | 6.27 |
11-09 22:06 | 229 | 7.07 | 1420.01 | 1256.7 | 1.246 | 34.73 | 43.27 | 6.38 |
11-09 22:07 | 229.4 | 6.82 | 1399.67 | 1255.7 | 1.246 | 34.73 | 43.27 | 6.52 |
11-09 22:08 | 229.7 | 6.67 | 1391.53 | 1254.9 | 1.246 | 34.71 | 43.25 | 6.68 |
… | … | … | … | … | … | … | … | … |
Targets for Projections | MAE | MSE | R2 |
---|---|---|---|
Temperature | 0.0295 | 0.0013 | 0.9710 |
Heating power | 0.0392 | 0.0024 | 0.9836 |
Prediction Model | MAE | MSE | R2 |
---|---|---|---|
LSTM | 0.0554 | 0.0050 | 0.966 |
MLP | 0.0725 | 0.0072 | 0.951 |
PSO-LSTM | 0.0392 | 0.0024 | 0.984 |
Targets for Projections | MAE | MSE | R2 |
---|---|---|---|
Temperature | 0.1292 | 0.0234 | 0.9427 |
Heating power | 0.0801 | 0.0111 | 0.9074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Gao, D.; Wang, S.; Zhang, W.; Lin, H.; An, Y. Particle Swarm Optimization–Long Short-Term Memory-Based Dynamic Prediction Model of Single-Crystal Furnace Temperature and Heating Power. Crystals 2025, 15, 110. https://doi.org/10.3390/cryst15020110
Hou L, Gao D, Wang S, Zhang W, Lin H, An Y. Particle Swarm Optimization–Long Short-Term Memory-Based Dynamic Prediction Model of Single-Crystal Furnace Temperature and Heating Power. Crystals. 2025; 15(2):110. https://doi.org/10.3390/cryst15020110
Chicago/Turabian StyleHou, Lin, Dedong Gao, Shan Wang, Wenyong Zhang, Haixin Lin, and Yan An. 2025. "Particle Swarm Optimization–Long Short-Term Memory-Based Dynamic Prediction Model of Single-Crystal Furnace Temperature and Heating Power" Crystals 15, no. 2: 110. https://doi.org/10.3390/cryst15020110
APA StyleHou, L., Gao, D., Wang, S., Zhang, W., Lin, H., & An, Y. (2025). Particle Swarm Optimization–Long Short-Term Memory-Based Dynamic Prediction Model of Single-Crystal Furnace Temperature and Heating Power. Crystals, 15(2), 110. https://doi.org/10.3390/cryst15020110