Noncovalent Interactions in Coordination Chemistry of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates
Abstract
:1. Introduction
2. The General Principles of the Self-Assembly of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates
2.1. Intermolecular Metallophilic Interactions
2.2. Intermolecular Interactions with Halogen Atom in Pyrazolate Fragment
2.3. Self-Organization Through Coordination Interactions with N- or O-Donor Substituents in the Pyrazolate Moiety
3. Intermolecular Complexes of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates with Bases of Different Natures
3.1. Intermolecular Interactions with π-Electron Systems
3.2. Intermolecular Interactions with O-, N-Donor Sites in Bases
3.3. Intermolecular Interactions with Hydride Ligands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yam, V.W.-W.; Au, V.K.-M.; Leung, S.Y.-L. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem. Rev. 2015, 115, 7589–7728. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.P.; Gimeno, M.C. Main Avenues in Gold Coordination Chemistry. Chem. Rev. 2021, 121, 8311–8363. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, Y.; Li, Z. Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chem. Asian J. 2021, 16, 2817–2829. [Google Scholar] [CrossRef] [PubMed]
- Ying, A.; Li, N.; Chen, X.; Xia, J.; Yang, C.; Gong, S. Ag(I) emitters with ultrafast spin-flip dynamics for high-efficiency electroluminescence. Chem. Sci. 2025, 16, 784–792. [Google Scholar] [CrossRef]
- Osawa, M.; Kawata, I.; Ishii, R.; Igawa, S.; Hashimoto, M.; Hoshino, M. Application of neutral d10 coinage metal complexes with an anionic bidentate ligand in delayed fluorescence-type organic light-emitting diodes. J. Mater. Chem. C 2013, 1, 4375–4383. [Google Scholar] [CrossRef]
- Di, D.; Romanov, A.S.; Yang, L.; Richter, J.M.; Rivett, J.P.; Jones, S.; Thomas, T.H.; Abdi Jalebi, M.; Friend, R.H.; Linnolahti, M.; et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 2017, 356, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ravaro, L.P.; Zanoni, K.P.S.; de Camargo, A.S.S. Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices. Energy Rep. 2020, 6, 37–45. [Google Scholar] [CrossRef]
- Phuoc, N.L.; Brannan, A.C.; Romanov, A.S.; Linnolahti, M. Tailoring Carbene-Metal-Amides for Thermally Activated Delayed Fluorescence: A Computationally Guided Study on the Effect of Cyclic (Alkyl)(amino)carbenes. Molecules 2023, 28, 4398. [Google Scholar] [CrossRef]
- Brannan, A.C.; Cho, H.H.; Reponen, A.M.; Gorgon, S.; Phuoc, N.L.; Linnolahti, M.; Greenham, N.C.; Romanov, A.S. Deep-Blue and Fast Delayed Fluorescence from Carbene-Metal-Amides for Highly Efficient and Stable Organic Light-Emitting Diodes. Adv. Mater. 2024, 36, e2404357. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.; Li, K.; Cheng, G.; Wang, Y.; Wang, J.; Li, J.; Zhou, C.; Liu, H.; Zou, T.; Xiong, J.; et al. Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. Inorg. Chem. 2020, 59, 12122–12131. [Google Scholar] [CrossRef] [PubMed]
- Giobbio, G.; Coto, P.B.; Lohier, J.F.; Renaud, J.L.; Gaillard, S.; Costa, R.D. [Ag(IPr)(bpy)][PF(6)]: Brightness and darkness playing with aggregation induced phosphorescence for light-emitting electrochemical cells. Dalton Trans. 2024, 53, 12307–12315. [Google Scholar] [CrossRef] [PubMed]
- Fresta, E.; Costa, R.D. Beyond traditional light-emitting electrochemical cells—A review of new device designs and emitters. J. Mater. Chem. C 2017, 5, 5643–5675. [Google Scholar] [CrossRef]
- Keller, S.; Prescimone, A.; La Placa, M.G.; Junquera-Hernandez, J.M.; Bolink, H.J.; Constable, E.C.; Sessolo, M.; Orti, E.; Housecroft, C.E. The shiny side of copper: Bringing copper(i) light-emitting electrochemical cells closer to application. RSC Adv. 2020, 10, 22631–22644. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Shu, T.; Du, X.; Yang, L.; Su, L.; Zhang, X. Luminescent Sensors Based on the Assembly of Coinage Metal Nanoclusters. Chemosensors 2022, 10, 253. [Google Scholar] [CrossRef]
- Chelushkin, P.S.; Krupenya, D.V.; Tseng, Y.J.; Kuo, T.Y.; Chou, P.T.; Koshevoy, I.O.; Burov, S.V.; Tunik, S.P. Water-soluble noncovalent adducts of the heterometallic copper subgroup complexes and human serum albumin with remarkable luminescent properties. Chem. Commun. 2014, 50, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhang, J.; Abbas, M.; Li, Y.; Hussain, S.Z.; Mumtaz, S.; Song, Z.; Hussain, I.; Tan, B. Facile Synthesis of Ultrastable Fluorescent Copper Nanoclusters and Their Cellular Imaging Application. Nanomaterials 2020, 10, 1678. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lei, Z.; Feng, W.; Li, C.; Wang, Q.M.; Li, F. A phosphorescent silver(I)-gold(I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging. Biomaterials 2013, 34, 4284–4295. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Perez, A.C.; Collins, S.K. Heteroleptic Cu-Based Sensitizers in Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 1557–1565. [Google Scholar] [CrossRef]
- Cheung, K.P.S.; Sarkar, S.; Gevorgyan, V. Visible Light-Induced Transition Metal Catalysis. Chem. Rev. 2022, 122, 1543–1625. [Google Scholar] [CrossRef]
- Muniz, C.N.; Archer, C.A.; Applebaum, J.S.; Alagaratnam, A.; Schaab, J.; Djurovich, P.I.; Thompson, M.E. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J. Am. Chem. Soc. 2023, 145, 13846–13857. [Google Scholar] [CrossRef]
- Peng, Y.; Bao, H.; Zheng, L.; Zhou, Y.; Ni, Q.; Chen, X.; Li, Y.; Yan, P.; Yang, Y.F.; Liu, Y. Cu(I)-Photosensitizer-Catalyzed Olefin-alpha-Amino Radical Metathesis/Demethylenative Cyclization of 1,7-Enynes. Org. Lett. 2024, 26, 3218–3223. [Google Scholar] [CrossRef]
- Lu, X.; Wei, S.; Wu, C.-M.L.; Li, S.; Guo, W. Can Polypyridyl Cu(I)-based Complexes Provide Promising Sensitizers for Dye-Sensitized Solar Cells? A Theoretical Insight into Cu(I) versus Ru(II) Sensitizers. J. Phys. Chem. C 2011, 115, 3753–3761. [Google Scholar] [CrossRef]
- Bozic-Weber, B.; Constable, E.C.; Housecroft, C.E. Light harvesting with Earth abundant d-block metals: Development of sensitizers in dye-sensitized solar cells (DSCs). Coord. Chem. Rev. 2013, 257, 3089–3106. [Google Scholar] [CrossRef]
- Franchi, D.; Leandri, V.; Pizzichetti, A.R.P.; Xu, B.; Hao, Y.; Zhang, W.; Sloboda, T.; Svanstrom, S.; Cappel, U.B.; Kloo, L.; et al. Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2022, 5, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Spuling, E.; Knoll, D.M.; Volz, D.; Bräse, S. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev. 2018, 373, 49–82. [Google Scholar] [CrossRef]
- Volz, D.; Wallesch, M.; Flechon, C.; Danz, M.; Verma, A.; Navarro, J.M.; Zink, D.M.; Brase, S.; Baumann, T. From iridium and platinum to copper and carbon: New avenues for more sustainability in organic light-emitting diodes. Green Chem. 2015, 17, 1988–2011. [Google Scholar] [CrossRef]
- Czerwieniec, R.; Leitl, M.J.; Homeier, H.H.H.; Yersin, H. Cu(I) complexes—Thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev. 2016, 325, 2–28. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough. Chem. Mater. 2017, 29, 1708–1715. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. TADF: Enabling luminescent copper(i) coordination compounds for light-emitting electrochemical cells. J Mater Chem C Mater 2022, 10, 4456–4482. [Google Scholar] [CrossRef] [PubMed]
- Artem’ev, A.V.; Demyanov, Y.V.; Rakhmanova, M.I.; Bagryanskaya, I.Y. Pyridylarsine-based Cu(I) complexes showing TADF mixed with fast phosphorescence: A speeding-up emission rate using arsine ligands. Dalton Trans. 2022, 51, 1048–1055. [Google Scholar] [CrossRef]
- Li, T.-y.; Schaab, J.; Djurovich, P.I.; Thompson, M.E. Toward rational design of TADF two-coordinate coinage metal complexes: Understanding the relationship between natural transition orbital overlap and photophysical properties. J. Mater. Chem. C 2022, 10, 4674–4683. [Google Scholar] [CrossRef]
- Yersin, H.; Czerwieniec, R.; Monkowius, U.; Ramazanov, R.; Valiev, R.; Shafikov, M.Z.; Kwok, W.-M.; Ma, C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord. Chem. Rev. 2023, 478, 214975. [Google Scholar] [CrossRef]
- Baranov, A.Y.; Rakhmanova, M.I.; Hei, X.; Samsonenko, D.G.; Stass, D.V.; Bagryanskaya, I.Y.; Ryzhikov, M.R.; Fedin, V.P.; Li, J.; Artem’ev, A.V. A new subclass of copper(I) hybrid emitters showing TADF with near-unity quantum yields and a strong solvatochromic effect. Chem. Commun. 2023, 59, 2923–2926. [Google Scholar] [CrossRef]
- Petyuk, M.Y.; Meng, L.; Ma, Z.; Agafontsev, A.M.; Bagryanskaya, I.Y.; Berezin, A.S.; Zhang, J.; Chu, A.; Rakhmanova, M.I.; Meng, H.; et al. Outstanding Circularly Polarized TADF in Chiral Cu(I) Emitters: From Design to Application in CP-TADF OLEDs. Angew. Chem. Int. Ed. 2024, 63, e202412437. [Google Scholar] [CrossRef] [PubMed]
- Artem’ev, A.V.; Bagryanskaya, I.Y.; Doronina, E.P.; Tolstoy, P.M.; Gushchin, A.L.; Rakhmanova, M.I.; Ivanov, A.Y.; Suturina, A.O. A new family of clusters containing a silver-centered tetracapped [Ag@Ag(4)(mu(3)-P)(4)] tetrahedron, inscribed within a N(12) icosahedron. Dalton Trans. 2017, 46, 12425–12429. [Google Scholar] [CrossRef] [PubMed]
- Rogovoy, M.I.; Frolova, T.S.; Samsonenko, D.G.; Berezin, A.S.; Bagryanskaya, I.Y.; Nedolya, N.A.; Tarasova, O.A.; Fedin, V.P.; Artem’ev, A.V. 0D to 3D Coordination Assemblies Engineered on Silver(I) Salts and 2-(Alkylsulfanyl)azine Ligands: Crystal Structures, Dual Luminescence, and Cytotoxic Activity. Eur. J. Inorg. Chem. 2020, 2020, 1635–1644. [Google Scholar] [CrossRef]
- Beaudelot, J.; Oger, S.; Perusko, S.; Phan, T.A.; Teunens, T.; Moucheron, C.; Evano, G. Photoactive Copper Complexes: Properties and Applications. Chem. Rev. 2022, 122, 16365–16609. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A. Advances in the coordination chemistry of nitrogen ligand complexes of coinage metals. Coord. Chem. Rev. 2010, 254, 1918–1947. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Diyabalanage, H.V.K.; Rawashdeh-Omary, M.A.; Franzman, M.A.; Omary, M.A. Bright Phosphorescence of a Trinuclear Copper(I) Complex: Luminescence Thermochromism, Solvatochromism, and “Concentration Luminochromism”. J. Amer. Chem. Soc. 2003, 125, 12072–12073. [Google Scholar] [CrossRef]
- Omary, M.A.; Rawashdeh-Omary, M.A.; Gonser, M.W.A.; Elbjeirami, O.; Grimes, T.; Cundari, T.R.; Diyabalanage, H.V.K.; Gamage, C.S.P.; Dias, H.V.R. Metal Effect on the Supramolecular Structure, Photophysics, and Acid−Base Character of Trinuclear Pyrazolato Coinage Metal Complexes†. Inorg. Chem. 2005, 44, 8200–8210. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.V.; Diyabalanage, H.V.; Eldabaja, M.G.; Elbjeirami, O.; Rawashdeh-Omary, M.A.; Omary, M.A. Brightly phosphorescent trinuclear copper(I) complexes of pyrazolates: Substituent effects on the supramolecular structure and photophysics. J. Am. Chem. Soc. 2005, 127, 7489–7501. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Diyabalanage, H.V.K.; Ghimire, M.M.; Hudson, J.M.; Parasar, D.; Palehepitiya Gamage, C.S.; Li, S.; Omary, M.A. Brightly phosphorescent tetranuclear copper(i) pyrazolates. Dalton Trans. 2019, 48, 14979–14983. [Google Scholar] [CrossRef]
- Emashova, S.K.; Titov, A.A.; Smol’yakov, A.F.; Chernyadyev, A.Y.; Godovikov, I.A.; Godovikova, M.I.; Dorovatovskii, P.V.; Korlykov, A.A.; Filippov, O.A.; Shubina, E.S. Emissive silver(i) cyclic trinuclear complexes with aromatic amine donor pyrazolate derivatives: Way to efficiency. Inorg. Chem. Front. 2022, 9, 5624–5634. [Google Scholar] [CrossRef]
- Watanabe, Y.; Washer, B.M.; Zeller, M.; Savikhin, S.; Slipchenko, L.V.; Wei, A. Copper(I)-Pyrazolate Complexes as Solid-State Phosphors: Deep-Blue Emission through a Remote Steric Effect. J. Am. Chem. Soc 2022, 144, 10186–10192. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-J.; Yang, H.; Peng, S.-K.; Xiao, Z.-M.; Huang, G.-Q.; Zheng, J.; Li, D. Multistimuli-responsive behavior of a phosphorescent Cu3pyrazolate3 complex for luminescent logic gates and encrypted information transformation. Inorg. Chem. Front. 2023, 10, 2594–2606. [Google Scholar] [CrossRef]
- You, P.Y.; Mo, K.M.; Wang, Y.M.; Gao, Q.; Lin, X.C.; Lin, J.T.; Xie, M.; Wei, R.J.; Ning, G.H.; Li, D. Reversible modulation of interlayer stacking in 2D copper-organic frameworks for tailoring porosity and photocatalytic activity. Nat. Commun 2024, 15, 194. [Google Scholar] [CrossRef]
- Xiao, Z.-M.; Yang, J.-X.; Chen, X.; Tang, W.-J.; Peng, S.-K.; Hao, D.-B.; Zhao, Z.-P.; Zheng, J.; Li, D. A fluorescence–phosphorescence dual-emissive Cu3(pyrazolate)3 complex with highly tunable emission colours for anticounterfeiting and temperature sensing. Inorg.Chem. Front. 2024, 11, 1808–1818. [Google Scholar] [CrossRef]
- Titov, A.A.; Smol’yakov, A.F.; Baranova, K.F.; Filippov, O.A.; Shubina, E.S. Synthesis, structures and photophysical properties of phosphorus-containing silver 3,5-bis(trifluoromethyl)pyrazolates. Mendeleev Commun. 2018, 28, 387–389. [Google Scholar] [CrossRef]
- Emashova, S.K.; Titov, A.A.; Filippov, O.A.; Smol’yakov, A.F.; Titova, E.M.; Epstein, L.M.; Shubina, E.S. Luminescent AgI Complexes with 2,2′-Bipyridine Derivatives Featuring [Ag-(CF3)2Pyrazolate]4 Units. Eur. J. Inorg. Chem. 2019, 2019, 4855–4861. [Google Scholar] [CrossRef]
- Parasar, D.; Ponduru, T.T.; Noonikara-Poyil, A.; Jayaratna, N.B.; Dias, H.V.R. Acetylene and terminal alkyne complexes of copper(i) supported by fluorinated pyrazolates: Syntheses, structures, and transformations. Dalton Trans. 2019, 48, 15782–15794. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Palehepitiya Gamage, C.S.; Jayaratna, N.B.; Hettiarachchi, C.V. Mixed ligand complexes of silver(i) supported by highly fluorinated pyrazolates, and chelating and bridging N-heterocycles. New J. Chem. 2020, 44, 17079–17087. [Google Scholar] [CrossRef]
- Yakovlev, G.B.; Titov, A.A.; Smol’yakov, A.F.; Chernyadyev, A.Y.; Filippov, O.A.; Shubina, E.S. Tetranuclear Copper(I) and Silver(I) Pyrazolate Adducts with 1,1′-Dimethyl-2,2′-bibenzimidazole: Influence of Structure on Photophysics. Molecules 2023, 28, 1189. [Google Scholar] [CrossRef]
- Titov, A.A.; Smol’yakov, A.F.; Chernyadyev, A.Y.; Godovikov, I.A.; Filippov, O.A.; Shubina, E.S. Pyrazolate vs. phenylethynide: Direct exchange of the anionic bridging ligand in a cyclic trinuclear silver complex. Chem. Commun. 2024, 60, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Titov, A.A.; Filippov, O.A.; Epstein, L.M.; Belkova, N.V.; Shubina, E.S. Macrocyclic copper(I) and silver(I) pyrazolates: Principles of supramolecular assemblies with Lewis bases. Inorg. Chim. Acta 2018, 470, 22–35. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Trujillo, C.; Sanchez-Sanz, G. Interaction between Trinuclear Regium Complexes of Pyrazolate and Anions, a Computational Study. Int. J. Mol. Sci. 2020, 21, 8036. [Google Scholar] [CrossRef]
- Huang, G.-Q.; Chen, X.; Zheng, J.; Li, D. The π-acidic coinage-metal cyclic trinuclear complexes with Lewis or π-bases and the relevant applications. J. Organomet. Chem. 2024, 1006, 122980. [Google Scholar] [CrossRef]
- Bovio, B.; Bonati, F.; Banditelli, G. X-ray crystal structure of tris[μ-3,5-bis(trifluoromethyl)pyrazolato-N,N′]trigold(I), a compound containing an inorganic nine-membered ring. Inorg. Chim. Acta 1984, 87, 25–33. [Google Scholar] [CrossRef]
- Raptis, R.G.; Murray, H.H.; Fackler, J.P. The synthesis and crystal structure of a novel gold(I)-pyrazolate hexamer containing an 18-membered inorganic ring. J. Chem. Soc. Chem. Commun. 1987, 10, 737–739. [Google Scholar] [CrossRef]
- Raptis, R.G.; Fackler, J.P. Structure of tris(.mu.-3,5-diphenylpyrazolato-N,N′)tricopper(I). Structural comparisons with the silver(I) and gold(I) pyrazolate trimers. Inorg. Chem. 1988, 27, 4179–4182. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Cenini, S.; La Monica, G.; Masciocchi, N.; Moret, M. Synthesis, X-ray Structure, and Catalytic Properties of the Unprecedented Tetranuclear Copper(I) Species [Cu(dppz)]4 (Hdppz = 3,4-Diphenylpyrazole). Inorg. Chem. 1994, 33, 1458–1463. [Google Scholar] [CrossRef]
- Ehlert, M.K.; Rettig, S.J.; Storr, A.; Thompson, R.C.; Trotter, J. Synthesis and X-ray crystal structure of the 3,5-dimethylpyrazolato copper(I) trimer, [Cu(pz″)]3. Can. J. Chem. 1990, 68, 1444–1449. [Google Scholar] [CrossRef]
- Ehlert, M.K.; Rettig, S.J.; Storr, A.; Thompson, R.C.; Trotter, J. Polynuclear pyrazolate complexes of copper. Crystal and molecular structures of [Cu(tmpz)]3, [Cu(3-CO2dmpz)(tmpzH)]2Cu, and [Cu(4-Br-3-CO2mepz)(4-Br-dmpzH)2]2 (where mepz = methylpyrazolate, dmpz = dimethylpyrazolate, and tmpz = trimethylpyrazolate) and magnetic susceptibility studies on the dinuclear complex. Can. J. Chem. 1992, 70, 2161–2173. [Google Scholar] [CrossRef]
- Masciocchi, N.; Cairati, P.; Sironi, A. Crystal structure determination of molecular compounds from conventional powder diffraction data: Trimeric silver(I) 3,5-dimethylpyrazolate. Powd. Diffr. 1998, 13, 35–40. [Google Scholar] [CrossRef]
- Masciocchi, N.; Moret, M.; Cairati, P.; Sironi, A.; Ardizzoia, G.A.; La Monica, G. The Multiphase Nature of the Cu(pz) and Ag(pz) (Hpz = Pyrazole) Systems: Selective Syntheses and Ab-Initio X-ray Powder Diffraction Structural Characterization of Copper(I) and Silver(I) Pyrazolates. J. Amer.Chem. Soc. 1994, 116, 7668–7676. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Polach, S.A.; Wang, Z. Coinage metal complexes of 3,5-bis(trifluoromethyl)pyrazolate ligand: Synthesis and characterization of {[3,5-(CF3)2Pz]Cu}3 and {[3,5-(CF3)2Pz]Ag}3. J. Fluor. Chem. 2000, 103, 163–169. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Diyabalanage, H.V.K. Trimeric silver(I) pyrazolates with isopropyl, bromo, and nitro substituents: Synthesis and characterization of {[3,5-(i-Pr)2Pz]Ag}3, {[3,5-(i-Pr)2-4-(Br)Pz]Ag}3, and {[3,5-(i-Pr)2-4-(NO2)Pz]Ag}3. Polyhedron 2006, 25, 1655–1661. [Google Scholar] [CrossRef]
- Grimes, T.; Omary, M.A.; Dias, H.V.; Cundari, T.R. Intertrimer and intratrimer metallophilic and excimeric bonding in the ground and phosphorescent States of trinuclear coinage metal pyrazolates: A computational study. J. Phys. Chem. A 2006, 110, 5823–5830. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Liu, Y.M.; Zhang, J.X.; Zhu, Y.Y.; Tang, M.S.; Ng, S.W.; Yang, G. Halogen-involving weak interactions manifested in the crystal structures of silver(I) or gold(I) 4-halogenated-3,5-diphenylpyrazolato trimers. CrystEngComm 2014, 16, 4987–4998. [Google Scholar] [CrossRef]
- Yang, G.; Baran, P.; Martínez, A.R.; Raptis, R.G. Substituent Effects on the Supramolecular Aggregation of AgI-Pyrazolato Trimers. Cryst. Growth Des. 2013, 13, 264–269. [Google Scholar] [CrossRef]
- Hettiarachchi, C.V.; Rawashdeh-Omary, M.A.; Korir, D.; Kohistani, J.; Yousufuddin, M.; Dias, H.V.R. Trinuclear Copper(I) and Silver(I) Adducts of 4-Chloro-3,5-bis(trifluoromethyl)pyrazolate and 4-Bromo-3,5-bis(trifluoromethyl)pyrazolate. Inorg. Chem. 2013, 52, 13576–13583. [Google Scholar] [CrossRef]
- Batsanov, S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001, 37, 871–885. [Google Scholar] [CrossRef]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef]
- Wang, X.-L.; Zheng, J.; Li, M.; Weng Ng, S.; Chan, S.L.-F.; Li, D. Curved Cyclic Trimers: Orthogonal Cu–Cu Interaction versus Tetrameric Halogen Bonding. Cryst. Growth Des. 2016, 16, 4991–4998. [Google Scholar] [CrossRef]
- Zhan, S.-Z.; Chen, W.; Lu, W.; Zheng, J.; Ding, F.; Feng, T.; Li, D. Counteranion-Triggered and Excitation-Dependent Chemopalette Effect in a Supramolecular Dual-Emissive System Based on Cu3Pz3. Inorg. Chem. 2019, 58, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.Z.; Chen, W.; Zheng, J.; Ng, S.W.; Li, D. Luminescent polymorphic aggregates of trinuclear Cu(I)-pyrazolate tuned by intertrimeric CuNPy weak coordination bonds. Dalton Trans. 2021, 50, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Zheng, J.; Li, M.; Zhan, S.Z.; Wang, J.H.; Li, D. Mechanically triggered fluorescence/phosphorescence switching in the excimers of planar trinuclear copper(i) pyrazolate complexes. Inorg. Chem. 2014, 53, 11604–11615. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Burini, A.; Galassi, R.; Paglialunga, D.; Galán-Mascarós, J.-R.; Dunbar, K.R.; Fackler, J.P. Self-assembly of a High-Nuclearity Chloride-Centered Copper(II) Cluster. Structure and Magnetic Properties of [Au(PPh3)2][trans-Cu6(μ-OH)6{μ-(3,5-CF3)2pz}6Cl]. Inorg. Chem. 2007, 46, 2348–2349. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Ricci, S.; Burini, A.; Galassi, R.; Santini, C.; Chiarella, G.M.; Melgarejo, D.Y.; Fackler, J.P., Jr. Halide and nitrite recognizing hexanuclear metallacycle copper(II) pyrazolates. Inorg. Chem. 2011, 50, 1014–1020. [Google Scholar] [CrossRef]
- Titov, A.A.; Guseva, E.A.; Filippov, O.A.; Babakhina, G.M.; Godovikov, I.A.; Belkova, N.V.; Epstein, L.M.; Shubina, E.S. The Role of Weak Interactions in Strong Intermolecular M...Cl Complexes of Coinage Metal Pyrazolates: Spectroscopic and DFT Study. J. Phys. Chem. A 2016, 120, 7030–7036. [Google Scholar] [CrossRef]
- Dias, H.V.R.; Gamage, C.S.P. Arene-sandwiched silver(I) pyrazolates. Angew. Chem. Int. Ed. 2007, 46, 2192–2194. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.V.R.; Gamage, C.S.P.; Keltner, J.; Diyabalanage, H.V.K.; Omari, I.; Eyobo, Y.; Dias, N.R.; Roehr, N.; McKinney, L.; Poth, T. Trinuclear Silver(I) Complexes of Fluorinated Pyrazolates. Inorg. Chem. 2007, 46, 2979–2987. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.V.R.; Singh, S.; Campana, C.F. Toluene-Sandwiched Trinuclear Copper(I) and Silver(I) Triazolates and Phosphine Adducts of Dinuclear Copper(I) and Silver(I) Triazolates. Inorg. Chem. 2008, 47, 3943–3945. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Rashdan, M.D.; Dharanipathi, S.; Elbjeirami, O.; Ramesh, P.; Dias, H.V. On/off luminescence vapochromic selective sensing of benzene and its methylated derivatives by a trinuclear silver(I) pyrazolate sensor. Chem. Commun. 2011, 47, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Omary, M.A.; Elbjeirami, O.; Gamage, C.S.P.; Sherman, K.M.; Dias, H.V.R. Sensitization of Naphthalene Monomer Phosphorescence in a Sandwich Adduct with an Electron-Poor Trinuclear Silver(I) Pyrazolate Complex. Inorg. Chem. 2009, 48, 1784–1786. [Google Scholar] [CrossRef]
- Jayaratna, N.B.; Hettiarachchi, C.V.; Yousufuddin, M.; Dias, H.V.R. Isolable arene sandwiched copper(i) pyrazolates. New J. Chem. 2015, 39, 5092–5095. [Google Scholar] [CrossRef]
- Titov, A.A.; Smol’yakov, A.F.; Filippov, O.A.; Godovikov, I.A.; Muratov, D.A.; Dolgushin, F.M.; Epstein, L.M.; Shubina, E.S. Supramolecular Design of the Trinuclear Silver(I) and Copper(I) Metal Pyrazolates Complexes with Ruthenium Sandwich Compounds via Intermolecular Metal−π Interactions. Cryst. Growth Des. 2017, 17, 6770–6779. [Google Scholar] [CrossRef]
- Tsupreva, V.N.; Titov, A.A.; Filippov, O.A.; Bilyachenko, A.N.; Smol’yakov, A.F.; Dolgushin, F.M.; Agapkin, D.V.; Godovikov, I.A.; Epstein, L.M.; Shubina, E.S. Peculiarities of the Complexation of Copper and Silver Adducts of a 3,5-Bis(trifluoromethyl)pyrazolate Ligand with Organoiron Compounds. Inorg. Chem. 2011, 50, 3325–3331. [Google Scholar] [CrossRef] [PubMed]
- Luciani, L.; Sargentoni, N.; Magini, C.; Galassi, R. Mechanochemical preparation of donor/acceptor adducts based on coronene and silver(i) pyrazolate metallacycles. New J. Chem. 2023, 47, 19856–19864. [Google Scholar] [CrossRef]
- Zhan, S.Z.; Ding, F.; Liu, X.W.; Zhang, G.H.; Zheng, J.; Li, D. White Light from Blue Fluorescence and Sensitized Yellow Long-Afterglow Phosphorescence of o-Terphenyl in Its pi-Acid...Base Adduct with Ag3Pz3. Inorg. Chem. 2019, 58, 12516–12520. [Google Scholar] [CrossRef]
- Olbrykh, A.P.; Tsorieva, A.V.; Korshunov, V.M.; Smol’yakov, A.F.; Godovikov, I.A.; Korlykov, A.A.; Taydakov, I.V.; Titov, A.A.; Filippov, O.A.; Shubina, E.S. Room-temperature phosphorescence and dual-emission behavior of simple biphenyl derivatives unlocked by intermolecular interactions with cyclic silver pyrazolate. Inorg. Chem. Front. 2025. [CrossRef]
- Shi, Z.-C.; Chen, W.; Zhan, S.-Z.; Li, M.; Xie, M.; Li, Y.Y.; Ng, S.W.; Huang, Y.-L.; Zhang, Z.; Ning, G.-H.; et al. Guest effects on crystal structure and phosphorescence of a Cu6L3 prismatic cage. Inorg. Chem. Front. 2020, 7, 1437–1444. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Ye, D.-Q.; Gao, Q.-Q.; Shi, Z.-C.; Xie, M.; Zhan, S.-Z.; Huang, Y.-L.; Ning, G.-H.; Li, D. Guest-boosted phosphorescence efficiency of a supramolecular cage. Inorg. Chem. Front 2021, 8, 2299–2304. [Google Scholar] [CrossRef]
- Olbrykh, A.; Titov, A.; Smol’yakov, A.; Filippov, O.; Shubina, E.S. Exploring the Interaction of Pyridine-Based Chalcones with Trinuclear Silver(I) Pyrazolate Complex. Inorganics 2023, 11, 175. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, W.; Wei, D.; Chen, J.H.; Ng, S.W.; Yang, G. Adducts of triangular silver(i) 3,5-bis(trifluoromethyl)pyrazolate with thiophene derivatives: A weak interaction model of desulfurization. Dalton Trans. 2019, 48, 16162–16166. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Lv, X.; Chen, J.H.; Wang, Y.; Yang, G. Complexation of triangular silver(I) or copper(I) nitropyrazolates with dibenzothiophenes having potential use in adsorptive desulfurization. Dalton Trans. 2021, 50, 2915–2927. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Qu, L.; Chen, X.; Yang, L.; Zhang, Y.; Wang, Y.; Weng Ng, S.; Yang, G. Efficient adsorptive removal of dibenzothiophenes from liquid fuel over a novel triangular Ag(I) complex. Sep. Purif. Technol. 2022, 284, 120289. [Google Scholar] [CrossRef]
- Ghimire, M.M.; Simon, O.C.; Harris, L.M.; Appiah, A.; Mitch, R.M.; Nesterov, V.N.; Macchioni, A.; Zuccaccia, C.; Rabaa, H.; Galassi, R.; et al. Binary Donor-Acceptor Adducts of Tetrathiafulvalene Donors with Cyclic Trimetallic Monovalent Coinage Metal Acceptors. Inorg. Chem. 2019, 58, 15303–15319. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Feng, X.; Ma, L.; Wang, Y.; Ng, S.W.; Yang, G. Adducts of a Triangular Copper(I) Pyrazolate with Thiophenic Compounds Featuring Short Cu(I)–S Contacts. Cryst. Growth Des. 2023, 23, 9132–9139. [Google Scholar] [CrossRef]
- Jayaratna, N.B.; Olmstead, M.M.; Kharisov, B.I.; Dias, H.V. Coinage Metal Pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as Buckycatchers. Inorg. Chem. 2016, 55, 8277–8280. [Google Scholar] [CrossRef]
- Galassi, R.; Ricci, S.; Burini, A.; Macchioni, A.; Rocchigiani, L.; Marmottini, F.; Tekarli, S.M.; Nesterov, V.N.; Omary, M.A. Solventless Supramolecular Chemistry via Vapor Diffusion of Volatile Small Molecules upon a New Trinuclear Silver(I)-Nitrated Pyrazolate Macrometallocyclic Solid: An Experimental/Theoretical Investigation of the Dipole/Quadrupole Chemisorption Phenomena. Inorg.Chem. 2013, 52, 14124–14137. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Wei, D.; Yang, G.; Ma, J.G.; Cheng, P. A systematic investigation of structural transformation in a copper pyrazolato system: A case study. Dalton Trans. 2020, 49, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Liu, Y.; Liu, C.M.; Chen, J.H.; Yang, G. An efficient mixed-valence copper pyrazolate catalyst for the conversion of carbon dioxide and epoxides into cyclic carbonates. Dalton Trans. 2023, 52, 9275–9281. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Jin, P.; Chen, J.-H.; Yang, G.; Zhang, W. A green approach to the preparation of triangular silver(I) 3,5-bis(trifluoromethyl)pyrazolate: Crystal structures of two adducts with triethylammonium nitrate or benzoic acid. Trans. Met. Chem. 2019, 44, 755–761. [Google Scholar] [CrossRef]
- Titov, A.A.; Filippov, O.A.; Bilyachenko, A.N.; Smol’yakov, A.F.; Dolgushin, F.M.; Belsky, V.K.; Godovikov, I.A.; Epstein, L.M.; Shubina, E.S. Complexes of Trinuclear Macrocyclic Copper(I) and Silver(I) 3,5-Bis(Trifluoromethyl)Pyrazolates with Ketones. Eur. J. Inorg. Chem. 2012, 2012, 5554–5561. [Google Scholar] [CrossRef]
- Titov, A.A.; Filippov, O.A.; Guseva, E.A.; Smol’yakov, A.F.; Dolgushin, F.M.; Epstein, L.M.; Belsky, V.K.; Shubina, E.S. Role of basic sites of substituted ferrocenes in interaction with the trinuclear 3,5-bis(trifluoromethyl)pyrazolates: Thermodynamics and structure of complexes. RSC Adv. 2014, 4, 8350. [Google Scholar] [CrossRef]
- Titov, A.A.; Smol’yakov, A.F.; Godovikov, I.A.; Chernyadyev, A.Y.; Molotkov, A.P.; Loginov, D.A.; Filippov, O.A.; Belkova, N.V.; Shubina, E.S. The role of weak intermolecular interactions in photophysical behavior of isocoumarins on the example of their interaction with cyclic trinuclear silver(I) pyrazolate. Inorg. Chim. Acta 2022, 539, 121004. [Google Scholar] [CrossRef]
- Song, J.-G.; Zheng, J.; Wei, R.-J.; Huang, Y.-L.; Jiang, J.; Ning, G.-H.; Wang, Y.; Lu, W.; Ye, W.-C.; Li, D. Crystalline mate for structure elucidation of organic molecules. Chem 2024, 10, 924–937. [Google Scholar] [CrossRef]
- Tsupreva, V.N.; Filippov, O.A.; Titov, A.A.; Krylova, A.I.; Sivaev, I.B.; Bregadze, V.I.; Epstein, L.M.; Shubina, E.S. Interaction of polyhedral boron hydride anions [B10H10]2− and [B12H12]2− with cyclic copper and silver 3,5-bis(trifluoromethyl)pyrazolate complexes. J. Organomet. Chem. 2009, 694, 1704–1707. [Google Scholar] [CrossRef]
- Titov, A.A.; Guseva, E.A.; Smol’yakov, A.F.; Dolgushin, F.M.; Filippov, O.A.; Golub, I.E.; Krylova, A.I.; Babakhina, G.M.; Epstein, L.M.; Shubina, E.S. Complexation of trimeric copper(I) and silver(I) 3,5-bis(trifluoromethyl)pyrazolates with amine-borane. Russ. Chem.Bull. 2014, 62, 1829–1834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olbrykh, A.; Yakovlev, G.; Titov, A.; Shubina, E. Noncovalent Interactions in Coordination Chemistry of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates. Crystals 2025, 15, 115. https://doi.org/10.3390/cryst15020115
Olbrykh A, Yakovlev G, Titov A, Shubina E. Noncovalent Interactions in Coordination Chemistry of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates. Crystals. 2025; 15(2):115. https://doi.org/10.3390/cryst15020115
Chicago/Turabian StyleOlbrykh, Arina, Gleb Yakovlev, Aleksei Titov, and Elena Shubina. 2025. "Noncovalent Interactions in Coordination Chemistry of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates" Crystals 15, no. 2: 115. https://doi.org/10.3390/cryst15020115
APA StyleOlbrykh, A., Yakovlev, G., Titov, A., & Shubina, E. (2025). Noncovalent Interactions in Coordination Chemistry of Cyclic Trinuclear Copper(I) and Silver(I) Pyrazolates. Crystals, 15(2), 115. https://doi.org/10.3390/cryst15020115