An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food
Abstract
:1. Introduction
2. Freezing Assisted by Magnetic Field (FA-MF)
Freezing of Food Matrices under MFs
3. Freezing under Electric Field
3.1. Freezing using Fluctuation Electric Field
Mechanism of Action of FEF
3.2. Freezing Assisted by Static Electric Field (FA-SEF)
Mechanisms of Action of FA-SEF
4. Freezing under Electromagnetic Radiation (ER)
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Symbol | Description |
CAS | Cell Alive System |
CFR | Conventional rapid freezer |
ER | Electromagnetic radiation |
FA-SEF | Freezing assisted by static electric field |
FEF | Fluctuating electric field |
MAF | Microwaves assisted freezing |
MC | Monte Carlo |
MD | Molecular Dynamics |
MF | Magnetic field |
MFs | Magnetic fields |
MW | Microwaves |
NaCl | Sodium chloride |
OMF | Oscillating magnetic field |
OMFs | Oscillating magnetic fields |
PEF | Pulsed electric field |
PMF | Pulsed magnetic field |
RF | Radiofrequency |
RF-AF | Radiofrequency assisted freezing |
RF-CF | Radiofrequency assisted cryogenic freezing |
SEF | Static electric field |
SEFs | Static electric fields |
SMF | Static magnetic field |
Nomenclature
Symbol | Description | Units |
B | Magnetic flux density | [T] |
E | Electric field | [V/m] |
f | Frequency | [Hz] |
∆Gn | Gibbs free energy | [J] |
∆G(S) | Surface free energy | [J] |
∆G(V) | Volume free energy | [J] |
∆Gv | Free energy change of the transformation per unit volume | [J/m3] |
H | Height | [m] |
∆Hf | Enthalpy of fusion | [J/g] |
k | Boltzmann constant | [J/K] |
M | Molarity | M or mol/L |
p | Pressure | [Pa] |
P | Permanent polarization | [C/m2] |
r | Radius of the nuclei | [m] |
t | Time | [s] |
tPEF | Time of PEF treatment | [s] |
T | Temperature | [K] |
∆T | Degree of supercooling | [K] |
T* | Solid-liquid equilibrium melting temperature | [K] |
V | Voltage | [V] |
σ | Surface tension | [J/m2] |
τ | Induction period | [s] |
ρ | Mass density | [kg/m3] |
Ø | Diameter | [m] |
References
- Fellows, P.J. Freezing. In Freezing. Food Processing Technology: Principles and Practice; CRC Press, Woodhead Publishing Limited: Boca Raton, FL, USA, 2000; pp. 418–440. [Google Scholar]
- Singh, R.P.; Heldman, D.R. Food Engineering. In Introduction to Food Engineering; Taylor, S.L., Ed.; Academic Press publications: San Diego, CA, USA, 2009; pp. 501–541. [Google Scholar]
- Petzold, G.; Aguilera, J.M. Ice morphology: Fundamentals and technological applications in foods. Food Biophys. 2009, 4, 378–396. [Google Scholar] [CrossRef]
- Hartel, R.W. Crystallization in Foods; Aspen Publishers: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Awotwe-otoo, D.; Agarabi, C.; Read, E.K.; Lute, S.; Brorson, K.A.; Khan, M.A.; Shah, R.B. Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody. Int. J. Pharm. 2013, 450, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.S.; Cheryan, M.; Sathe, S.K.; Salunkhe, D.K.; Luh, B.S. Freeze concentration of fruit juices. Crit. Rev. Food Sci. Nutr. 1984, 20, 173–248. [Google Scholar] [CrossRef] [PubMed]
- Bruin, S.; Jongen, T.R.G. Food Process Engineering: The Last 25 Years and Challenges Ahead. Compr. Rev. Food Sci. Food Saf. 2003, 2, 42–81. [Google Scholar] [CrossRef]
- Koch, H.; Seyderhelm, I.; Wille, P.; Kalichevsky, M.T.; Knorr, D. Pressure-shift freezing and its influence on texture, colour, microstructure and rehydration behaviour of potato cubes. Mol. Nutr. Food Res. 1996, 40, 125–131. [Google Scholar] [CrossRef]
- Sun, D.W.; Li, B. Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J. Food Eng. 2003, 57, 337–345. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Le-Bail, A.; Jha, P.; Xanthakis, E.; Havet, M.; Jury, V. Phase change under static electrical field; in the case of lipids. In Refrigeration Science and Technology; IIF-IIR: Paris, France, 2016; pp. 138–143. [Google Scholar]
- Orlowska, M.; Havet, M.; Le-Bail, A. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res. Int. 2009, 42, 879–884. [Google Scholar] [CrossRef]
- Otero, L.; Rodrguez, A.C.; Prez-Mateos, M.; Sanz, P.D. Effects of Magnetic Fields on Freezing: Application to Biological Products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 646–667. [Google Scholar] [CrossRef]
- Xanthakis, E.; Le-Bail, A.; Ramaswamy, H. Development of an innovative microwave assisted food freezing process. Innov. Food Sci. Emerg. Technol. 2014, 26, 176–181. [Google Scholar] [CrossRef]
- Li, B.; Sun, D.W. Novel methods for rapid freezing and thawing of foods—A review. J. Food Eng. 2002, 54, 175–182. [Google Scholar] [CrossRef]
- Pang, X.F.; Bo, D. Investigation of changes in properties of water under the action of a magnetic field. Sci. China Ser. G Phys. Mech. Astron. 2008, 51, 1621–1632. [Google Scholar] [CrossRef]
- Pang, X.F.; Bo, D. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Phys. B Condens. Matter 2008, 403, 3571–3577. [Google Scholar] [CrossRef]
- Wowk, B. Electric and magnetic fields in cryopreservation. Cryobiology 2012, 64, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Beaugnon, E.; Tournier, R. Levitation of water and organic substances in high static magnetic fields. J. Phys. III Fr. 1991, 1, 1423–1428. [Google Scholar] [CrossRef]
- Tagami, M.; Hamai, M.; Mogi, I.; Watanabe, K.; Motokawa, M. Solidification of levitating water in a gradient strong magnetic field. J. Cryst. Growth 1999, 203, 594–598. [Google Scholar] [CrossRef]
- Ikezoe, A.; Hirota, N.; Nakagawa, J.; Kitazawa, K. Making water levitate. Nature 1998, 393, 749–750. [Google Scholar] [CrossRef]
- Cai, R.; Yang, H.; He, J.; Zhu, W. The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 2009, 938, 15–19. [Google Scholar] [CrossRef]
- Toledo, E.J.L.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
- Deng, B.; Pang, X. Variations of optic properties of water under action of static magnetic field. Chin. Sci. Bull. 2007, 52, 3179–3182. [Google Scholar] [CrossRef]
- Hosoda, H.; Mori, H.; Sogoshi, N.; Nagasawa, A.; Nakabayashi, S. Refractive indices of water and aqueous electrolyte solutions under high magnetic fields. J. Phys. Chem. A 2004, 108, 1461–1464. [Google Scholar] [CrossRef]
- Chang, K.; Weng, C. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 2006, 100, 43917–43922. [Google Scholar] [CrossRef]
- Zhou, K.X.; Lu, G.W.; Zhou, Q.C.; Song, J.H.; Jiang, S.T.; Xia, H.R. Monte Carlo simulation of liquid water in a magnetic field. J. Appl. Phys. 2000, 88, 1802–1805. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, K.; Yang, Z. Changes of Water Hydrogen Bond Network with Different Externalities. Int. J. Mol. Sci. 2015, 16, 8454–8489. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, B.; Gong, Z.; Gao, K.; Ou, Y.; Zhang, J. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments. J. Mol. Struct. 2013, 1052, 102–104. [Google Scholar] [CrossRef]
- Martiniano, H.F.M.C.; Galamba, N. Insights on Hydrogen-Bond Lifetimes in Liquid and Supercooled Water. J. Phys. Chem. B 2013, 117, 16188–16195. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, V.D.; Barannikov, A.A.; Dobritsa, N.V. Effect of magnetic field on the supercooling of water drops. Inorg. Mater. 2000, 36, 1072–1075. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, H.; Han, J. Supercooling and crystallization of water under DC magnetic fields. CIESC J. 2012, 63, 1408–1410. [Google Scholar]
- Inaba, H.; Saitou, T.; Tozaki, K.; Hayashi, H. Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J. Appl. Phys. 2012, 96, 6127–6132. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, W.; Dong, H. Magnetic freezing of confined water. J. Chem. Phys. 2010, 133, 134703. [Google Scholar] [CrossRef] [PubMed]
- Mok, J.H.; Choi, W.; Park, S.H.; Lee, S.H.; Jun, S. Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. Int. J. Refrig. 2015, 50, 137–145. [Google Scholar] [CrossRef]
- Semikhina, L.P.; Kiselev, V.F. Effect of weak magnetic fields on the properties of water and ice. Sov. Phys. J. 1988, 31, 351–354. [Google Scholar] [CrossRef]
- Mihara, M.; Nakagawa, T.; Noguchi, S.; Dohi, T.; Masamune, K.; Niino, T.; Yamashita, H. Freezing Method. EP Patent 2499924 A1, 9 September 2012. [Google Scholar]
- Niino, T.; Nakagawa, T.; Noguchi, S.; Sato, I.; Kawai, T.; Yamashita, H.; Masamune, K.; Dohi, T.; Mihara, M. Whole Ovary Cryopreservation Applying Supercooling under Magnetic Field. Mech. Eng. Cryopreserv. Reprod. Tech. 2012, 5, 14–20. [Google Scholar] [CrossRef]
- James, C.; Reitz, B.; James, S.J. The Freezing Characteristics of Garlic Bulbs (Allium sativum L.) Frozen Conventionally or with the Assistance of an Oscillating Weak Magnetic Field. Food Bioprocess Technol. 2015, 8, 702–708. [Google Scholar] [CrossRef]
- Naito, M.; Hirai, S.; Mihara, M.; Terayama, H.; Hatayama, N.; Hayashi, S.; Matsushita, M.; Itoh, M. Effect of a Magnetic Field on Drosophila under Supercooled Conditions. PLoS ONE 2012, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, P.K.; Jain, S.M.; Adams, C.M., Jr. Effect of Magnetic and Electrical Fields on Dendritic Freezing of Aqueous Solutions of Sodium Chloride. Mater. Sci. Eng. 1974, 15, 283–290. [Google Scholar] [CrossRef]
- Iwasaka, M.; Onishi, M.; Kurita, S.; Owada, N. Effects of pulsed magnetic fields on the light scattering property of the freezing process of aqueous solutions. J. Appl. Phys. 2011, 109, 1–4. [Google Scholar] [CrossRef]
- Owada, N. Highly-Efficient Freezing Apparatus and Highly-Efficient Freezing Method. US Patent 7237400 B2, 3 July 2007. [Google Scholar]
- Sato, M.; Fujita, K. Freezer, Freezing Method and Frozen Objects. US Patent 7418823 B2, 2 September 2008. [Google Scholar]
- Owada, N.; Kurita, S. Super-Quick Freezing Method and Apparatus Therefor. US Patent 6250087 B1, 26 June 2001. [Google Scholar]
- Owada, N.; Saito, S. Quick Freezing Apparatus and Quick Freezing Method. US Patent 7810340 B2, 12 October 2010. [Google Scholar]
- Kobayashi, A.; Kirschvink, J.L. A ferromagnetic model for the action of electric and magnetic fields in cryopreservation. Cryobiology 2014, 68, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Golash, H.N.; Kirschvink, J.L. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation. Cryobiology 2016, 72, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Takeuchi, Y.; Masuda, K.; Watanabe, M.; Shirakashi, R.; Fukuda, Y.; Tsuruta, T.; Yamamoto, K.; Koga, N.; Hiruma, N.; et al. Experimental investigation of effectiveness of magnetic field on food freezing process. Trans. Jpn. Soc. Refrig. Air Cond. Eng. 2011, 26, 371–386. [Google Scholar]
- Yamamoto, N.; Tamura, S.; Matsushita, J.; Ishimura, K. Fracture Properties and Microstructure of Chicken Breasts Frozen by Electromagnetic Freezing. J. Home Econ. Jpn. 2005, 56, 141–151. [Google Scholar]
- Choi, Y.S.; Ku, S.K.; Jeong, J.Y.; Jeon, K.H.; Kim, Y.B. Changes in ultrastructure and sensory characteristics on electro-magnetic and air blast freezing of beef during frozen storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Havet, M.; Orlowska, M.; Le-Bail, A. Effects of an electrostatic field on ice nucleation. In Proceedings of the International Conference on Bio and Food Electrotechnologies, Compiègne, France, 22–23 October 2009; pp. 204–219. [Google Scholar]
- Sun, W.; Xu, X.; Zhang, H.; Sun, W.; Xu, C. The Mechanism Analysis of NaCI Solution Ice Formation Suppressed by Electric Field. In Proceedings of the IEEE 8th International Conference on Properties & Applications of Dielectric Materials (ICPADM), Bali, Indonesian, 26–30 June 2006; pp. 770–773. [Google Scholar]
- Sun, W.; Xu, X.; Sun, W.; Ying, L.; Xu, C. Effect of Alternated Electric Field on the Ice Formation During Freezing Process of 0.9% K2MnO4 Water. In Proceedings of the IEEE 8th International Conference on Properties & Applications of Dielectric Materials (ICPADM), Bali, Indonesian, 26–30 June 2006; pp. 774–777. [Google Scholar]
- Stan, C.A.; Tang, S.K.Y.; Bishop, K.J.M.; Whitesides, G.M. Externally applied electric fields up to 1.6 × 105 V/m do not affect the homogeneous nucleation of ice in supercooled water. J. Phys. Chem. B 2011, 115, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salt, R.W. Effect of Electrostatic Field on Freezing of Supercooled Water and Insects. Science 1961, 133, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.T.; Van Den Hueval, A.P.; Mason, B.J. Thc Growth of Ice Crystals in an Electric Field. Zeitschrift Angew. Math. Phys. ZAMP 1963, 14, 599–610. [Google Scholar] [CrossRef]
- Kim, S.C.; Shin, J.M.; Lee, S.W.; Kim, C.H.; Kwon, Y.C.; Son, K.Y. Non-Freezing Refrigerator. US Patent 8616008 B2, 31 December 2013. [Google Scholar]
- Jackson, T.H.; Ungan, A.; Critser, J.K.; Gao, D. Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation. Cryobiology 1997, 34, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.W.; Mujumdar, A.S. Effects of Electric and Magnetic Field on Freezing and Possible Relevance in Freeze Drying. Dry. Technol. 2010, 28, 433–443. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Xanthakis, E.; Le-Bail, A. Review on Control of Ice Nucleation by Ultrasound Waves, Electric and Magnetic Fields. J. Food Eng. 2016, 195, 222–234. [Google Scholar] [CrossRef]
- Hu, S.Q.; Liu, G.; Li, L.; Li, Z.X.; Hou, Y. An improvement in the immersion freezing process for frozen dough via ultrasound irradiation. J. Food Eng. 2013, 114, 22–28. [Google Scholar] [CrossRef]
- Dufour, L. Ueber das Gefrieren des Wassers und über die Bildung des Hagels. Ann. Phys. 1861, 190, 530–554. [Google Scholar] [CrossRef]
- Xanthakis, E.; Havet, M.; Chevallier, S.; Abadie, J.; Le-Bail, A. Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innov. Food Sci. Emerg. Technol. 2013, 20, 115–120. [Google Scholar] [CrossRef]
- Wei, S.; Xu, X.; Zhang, H.; Xu, C. Effects of dipole polarization of water molecules on ice formation under an electrostatic field. Cryobiology 2008, 56, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; He, X.; Nirasawa, S.; Tatsumi, E.; Liu, H. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J. Food Eng. 2017, 204, 18–26. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A. Effect of freezing under electrostatic field on the quality of lamb meat. Innov. Food Sci. Emerg. Technol. 2016, 37, 68–73. [Google Scholar] [CrossRef]
- Carpenter, K.; Bahadur, V. Electrofreezing of water droplets under electrowetting fields. Langmuir 2015, 31, 2243–2248. [Google Scholar] [CrossRef] [PubMed]
- Rau, W. Eiskeimbildung durch dielektrische Polarisation. Z. Naturforsch. Sect. A J. Phys. Sci. 1951, 6, 649–657. [Google Scholar]
- Doolittle, J.B.; Vali, G. Heterogeneous freezing nucleation in electric fields. J. Atmos. Sci. 1975, 32, 375–379. [Google Scholar] [CrossRef]
- Choi, E.M.; Yoon, Y.H.; Lee, S.; Kang, H. Freezing transition of interfacial water at room temperature under electric fields. Phys. Rev. Lett. 2005, 95, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Chen, M. Role of the electric double layer in the ice nucleation of water droplets under an electric field. Atmos. Res. 2016, 178, 150–154. [Google Scholar] [CrossRef]
- Dalvi-isfahan, M.; Hamdami, N.; Le-bail, A. Effect of freezing under electrostatic field on selected properties of an agar gel. Innov. Food Sci. Emerg. Technol. 2017, 42, 151–156. [Google Scholar] [CrossRef]
- Jha, P.K.; Sadot, M.; Vino, S.A.; Rouaud, O.; Havet, M.; Jury, V.; Curet-ploquin, S.; Le-Bail, A. A review on effect of DC voltage on crystallization process in food systems. Innov. Food Sci. Emerg. Technol. 2017, 42, 204–219. [Google Scholar] [CrossRef]
- Kashchiev, D. On the influence of the electric field. Philos. Mag. 1972, 25, 459–470. [Google Scholar] [CrossRef]
- Orlowska, M.; Le-Bail, A.; Havet, M. Electrofreezing. In Ohmic Heating in Food Processing; Ramaswamy, H.S., Marcotte, M., Sastry, S., Abdelrahim, K., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 423–437. [Google Scholar]
- Saban, K.V.; Thomas, J.; Varughese, P.A.; Verghese, G. Thermodynamics of Crystal Nucleation in an External Electric Field. Cryst. Res. Technol. 2002, 37, 1188–1199. [Google Scholar] [CrossRef]
- Xanthakis, E.; Le-bail, A.; Havet, M. Freezing Combined with Electrical and Magnetic Disturbances. In Emerging Technologies for Food Processing; Sun, D.W., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2014; pp. 563–579. [Google Scholar]
- Shevkunov, S.V.; Vegiri, A. Electric field induced transitions in water clusters. J. Mol. Struct. THEOCHEM 2002, 593, 19–32. [Google Scholar] [CrossRef]
- Sun, W.; Chen, Z.; Huang, S. Effect of an external electric field on liquid water using molecular dynamics simulation with a flexible potential. J. Shanghai Univ. (English Ed.) 2006, 10, 268–273. [Google Scholar] [CrossRef]
- Vegiri, A. Reorientational relaxation and rotational-translational coupling in water clusters in a d.c. external electric field. J. Mol. Liq. 2004, 110, 155–168. [Google Scholar] [CrossRef]
- Vegiri, A.; Schevkunov, S.V. A molecular dynamics study of structural transitions in small water clusters in the presence of an external electric field. J. Chem. Phys. 2001, 115, 4175–4185. [Google Scholar] [CrossRef]
- Svishchev, I.M.; Kusalik, P.G. Crystallization of liquid water in a molecular dynamics simulation. Phys. Rev. Lett. 1994, 73, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.H.; Yang, J.H.; Jhon, M.S. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations. Chem. Phys. 1999, 244, 331–337. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics, 86th ed.; Lide, D.R. (Ed.) CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Schoenbach, K.; Kolb, J.; Xiao, S.; Katsuki, S.; Minamitani, Y.; Joshi, R. Electrical breakdown of water in microgaps. Plasma Sources Sci. Technol. 2008, 17, 24010. [Google Scholar] [CrossRef]
- Hanyu, Y.; Ichikawa, M.; Matsumoto, G. An improved cryofixation method: cryoquenching of small tissue blocks during microwave irradiation. J. Microsc. 1992, 165, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Anese, M.; Manzocco, L.; Panozzo, A.; Beraldo, P.; Foschia, M.; Nicoli, M.C. Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res. Int. 2012, 46, 50–54. [Google Scholar] [CrossRef]
- Sadot, M.; Curet, S.; Rouaud, O.; Le-bail, A.; Havet, M. Numerical modelling of an innovative microwave assisted freezing process. Int. J. Refrig. 2017, 80, 66–76. [Google Scholar] [CrossRef]
- Farouk, M.M.; Wieliczko, K.J.; Merts, I. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. 2004, 66, 171–179. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Lagerstedt, Å.; Enfält, L.; Johansson, L.; Lundström, K. Effect of freezing on sensory quality, shear force and water loss in beef M. longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sun, D.W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes—A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57, 769–781. [Google Scholar] [CrossRef] [PubMed]
Sample | Conditions | Observations | Reference |
---|---|---|---|
Water drops of a few millimeters in diameters | 2–6 × 106 V/m, Electric field was applied once the water got supercooled to a temperature between −4° to −7 °C |
| Rau [69] |
Distilled Water and water with organic nuclei | 6 × 105 V/m |
| Doolittle & Vali [70] |
Interfacial water | 106 V/m, at a room temperature |
| Choi et al. [71] |
Distilled water (1 mL) | Sample was cooled from 5 °C to −30 °C in the presence of electric field varying from 1.0 × 103–1.0 × 105 V/m |
| Wei et al. [65] |
Distilled water (1.6 mL) | The SEF equivalent of 0–6.0 × 106 V/m was applied when distilled water sample was cooled from 1 to −16 °C |
| Orlowska et al. [12] |
Pork tenderloin(1 g) | 0–12 kV, sample was cooled from 1 to −20 °C with a cooling rate of 1 °C/min |
| Xanthakis et al. [64] |
Water (5 μL) | Up to 8 × 107 V/m |
| Carpenter & Bahadur [68] |
Deionized water droplets | 4.28 ± 0.13 × 105 V/m, cooling rate of 1.0 ± 0.2 K/min |
| Zhang et al. [72] |
Lamb meat (2.3–2.5 g), (Ø = 10 mm, H=10 mm) | 0–5.8 × 104 V/m, sample was cooled to −20 °C |
| Dalvi-Isfahan et al. [67] |
Deionized water and Pork tenderloin: fresh meat was cut into cuboids (50 × 50 × 10 mm3) | DC voltage of magnitude 0–10 kV was applied at the same time upon initiation of cooling the samples to less than −15 °C |
| Jia et al. [66] |
Agar gel (Ø = 20 mm, H = 10 mm) | Agar gels were frozen under SEF 0–5.8 × 104 V/m at −20 °C |
| Dalvi-isfahan et al. [73] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, P.K.; Xanthakis, E.; Jury, V.; Le-Bail, A. An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food. Crystals 2017, 7, 299. https://doi.org/10.3390/cryst7100299
Jha PK, Xanthakis E, Jury V, Le-Bail A. An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food. Crystals. 2017; 7(10):299. https://doi.org/10.3390/cryst7100299
Chicago/Turabian StyleJha, Piyush Kumar, Epameinondas Xanthakis, Vanessa Jury, and Alain Le-Bail. 2017. "An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food" Crystals 7, no. 10: 299. https://doi.org/10.3390/cryst7100299
APA StyleJha, P. K., Xanthakis, E., Jury, V., & Le-Bail, A. (2017). An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food. Crystals, 7(10), 299. https://doi.org/10.3390/cryst7100299