Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental
3.1.1. Crystal Growth and Structure Determination
3.1.2. XPS and XES Data
3.1.3. Optical Properties
3.1.4. Nonlinear Optical Properties
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Yursek, N.S.; Kavas, H.; Gansaly, N.M.; Ozkan, H. Trapping center parameters of TlGaSe2 layered crystals. Phys. B 2004, 344, 249. [Google Scholar]
- Fedotov, A.K.; Tarasik, M.I.; Mammadov, T.G.; Svito, I.A.; Zhukowski, P.; Koltunowicz, T.N.; Seyidov, M.Y.; Suleymanov, R.A.; Grivickas, V. Electrical properties of the layered single crystals TlGaSe2 and TlInS2. Prz. Elektrotech. 2012, 88, 301–304. [Google Scholar]
- Delgado, G.E.; Mora, A.J.; Pérez, F.V.; González, J. Growth and crystal structure of the layered compound TlGaSe2. Cryst. Res. Technol. 2007, 42, 663–666. [Google Scholar] [CrossRef]
- Shaban, H.T. Measurements of transport properties of TlGaSe2 crystals. Mater. Chem. Phys. 2010, 119, 131–134. [Google Scholar] [CrossRef]
- Hanias, M.P.; Anagnostopoulos, A.N.; Kambas, K.; Spyridelis, J. Electrical and optical properties of as-grown TlInS2, TlGaSe2 and TlGaS2 single crystals. Mater. Res. Bull. 1992, 27, 25–38. [Google Scholar] [CrossRef]
- Qasrawi, A.F.; Gasanly, N.M. Electrical conductivity and Hall mobility in p-type TlGaSe2 crystals. Mater. Res. Bull. 2004, 39, 1353–1359. [Google Scholar] [CrossRef]
- Liu, Z.; Peters, J.A.; Zang, C.; Cho, N.K.; Wessels, B.W.; Johnsen, S.; Peter, S.; Androulakis, J.; Kanatzidis, M.G.; Song, J.H.; et al. Tl-based wide gap semiconductor materials for x-ray and gamma ray detection. Proc. SPIE 2011, 8018, 80180H. [Google Scholar] [CrossRef]
- Johnsen, S.; Liu, Z.; Peters, J.A.; Song, J.H.; Peter, S.C.; Malliakas, C.D.; Cho, N.K.; Jin, H.; Freeman, A.J.; Wessels, B.W.; et al. Thallium Chalcogenide-Based Wide-Band-Gap Semiconductors: TlGaSe2 for Radiation Detectors. Chem. Mater. 2011, 23, 3120–3128. [Google Scholar] [CrossRef]
- Abasova, A.Z.; Kerimova, E.M.; Muradova, G.A.; Pashaev, A.M. Ionizing irradiation of photoresistors and diode structure on the base of TlGaSe2 and TlInSe2 single crystals. Phys. Conf. Ser. 1998, 152, 983–988. [Google Scholar]
- Badikov, V.V.; Tyulyupa, A.G.; Shevyrdyaeva, G.S.; Sheina, S.G. Solid-Solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 Systems. Inorg. Mater. 1991, 21, 177–180. [Google Scholar]
- Al-Harbi, E.; Wojciechowski, A.; AlZayed, N.; Parasyuk, O.V.; Gondek, E.; Armatys, P.; El-Naggar, A.M.; Kityk, I.V.; Karasinski, P. IR laser induced spectral kinetics of AgGaGe3Se8: Cu chalcogenide crystals. Spectrochim. Acta A 2013, 111, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Parasyuk, O.V.; Fedorchuk, A.O.; Gorgut, G.P.; Khyzhun, O.Y.; Wojciechowski, A.; Kityk, I.V. Crystal growth, electron structure and photo induced optical changes in novel AgxGaxGe1−xSe2 (x = 0.333, 0.250, 0.200, 0.167) crystals. Opt. Mater. 2012, 35, 65–73. [Google Scholar] [CrossRef]
- Petrov, V.; Noack, F.; Badikov, V.; Shevyrdyaeva, G.; Panyutin, V.; Chizhikov, V. Phase-matching and femtosecond difference-frequency generation in the quaternary semiconductor AgGaGe5Se12. Appl. Opt. 2004, 43, 4590–4597. [Google Scholar] [CrossRef] [PubMed]
- Schunemann, P.G.; Zawilski, K.T.; Pollak, T.M. Horizontal gradient freeze growth of AgGaGeS4 and AgGaGe5Se12. J. Cryst. Growth 2006, 287, 248–251. [Google Scholar] [CrossRef]
- Badikov, V.; Mitin, K.; Noack, F.; Panyutin, V.; Petrov, V.; Seryogin, A.; Shevyrdyaeva, G. Orthorhombic nonlinear crystals of AgxGaxGe1−xSe2 for the mid-infrared spectral range. Opt. Mater. 2009, 31, 590–597. [Google Scholar] [CrossRef]
- Chirilă, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A.R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S.; et al. Highly efficient Cu (In, Ga) Se2 solar cells grown on flexible polymer films. Nat. Mater. 2011, 10, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Mozolyuk, M.Y. Phase Equilibria and Properties of Phases in the Tl2X-BIIX-DIVX2 and TlCIIIX2-DIVX2 Systems (BII-Hg,Pb; CIII-Ga,In; DIV-Si,Ge,Sn; X-S,Se). Ph.D. Thesis, Uzhhorod National University, Uzhhorod, Ukraine, 2013. [Google Scholar]
- Mozolyuk, M.Y.; Piskach, L.V.; Fedorchuk, A.O.; Kityk, I.V.; Olekseyuk, I.D.; Parasyuk, O.V. Phase diagram of the quasi-binary system TlInSe2–SnSe2. J. Alloys Compd. 2011, 509, 2693–2696. [Google Scholar] [CrossRef]
- Franiv, A.V.; Kushnir, O.S.; Girnyk, I.S.; Franiv, V.A.; Kityk, I.; Piasecki, M.; Plucinski, K.J. Growth, crystal structure, thermal properties and optical anisotropy of Tl4CdI6 single crystals. Ukr. J. Opt. 2013, 14, 6–14. [Google Scholar] [CrossRef]
- Myronchuk, G.L.; Davydyuk, G.E.; Parasyuk, O.V.; Khyzhun, O.Y.; Andrievski, R.A.; Fedorchuk, A.O.; Danylchuk, S.P.; Piskach, L.V.; Mozolyuk, M.Y. Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. J. Mater. Sci. Mater. Electron. 2013, 24, 3555–3563. [Google Scholar] [CrossRef]
- Myronchuk, G.L.; Zamurueva, O.V.; Parasyuk, O.V.; Piskach, L.V.; Fedorchuk, A.O.; AlZayed, N.S.; El-Naggar, A.M.; Ebothe, J.; Lis, M.; Kityk, I.V. Structural and optical properties of novel optoelectronic Tl1−xIn1−xSixSe2 single crystals. J. Mater. Sci. Mater. Electron. 2014, 25, 3226–3232. [Google Scholar] [CrossRef]
- Barchij, I.; Sabov, M.; El-Naggar, A.M.; AlZayed, N.S.; Albassam, A.A.; Fedorchuk, A.O.; Kityk, I.V. Tl4SnS3, Tl4SnSe3 and Tl4SnTe3 crystals as novel IR induced optoelectronic materials. J. Mater. Sci. Mater. Electron. 2016, 27, 3901–3905. [Google Scholar] [CrossRef]
- Kityk, I.V.; Ozga, K.; Ren, J.; Wagner, T.; Frumar, M. Optical and DC-electric poling on AgX (X = Cl, I)-Doped chalcohalide glasses. Laser Phys. 2008, 18, 780–782. [Google Scholar] [CrossRef]
- Kityk, I.V. IR-stimulated second harmonic generation in Sb2Te2 Se-BaF2-PbCl2 glasses. J. Mod. Opt. 2004, 51, 1179–1189. [Google Scholar]
- Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Krinitsin, P.; Petrov, V.; Zondy, J.J. Ternary chalcogenides LiBC2 (B = In, Ga; C = S, Se, Te) for mid-IR nonlinear optics. J. Non-Cryst. Solids 2006, 352, 2439–2443. [Google Scholar] [CrossRef]
- Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Vedenyapin, V.; Krinitsyn, P.; Petrov, V. Properties of LiGa0.5In0.5Se2: A quaternary chalcogenide crystal for nonlinear optical applications in the mid-IR. Crystals 2016, 6, 85. [Google Scholar] [CrossRef]
- Nakamura, Y.; Aruga, A.; Nakai, I.; Nagashima, K. The Crystal structure of a new thiosilicate of thallium, TlInSiS4. Bull. Chem. Soc. Jpn. 1984, 57, 1718–1722. [Google Scholar] [CrossRef]
- Myronchuk, G.; Danylchuk, S.; Parasyuk, O.V.; Piskach, L.V.; Fedorchuk, A.O. Spectral and conductivity features of novel ternary Tl1–xIn1–xSnxS2 crystals. Cryst. Res. Technol. 2013, 48, 464–475. [Google Scholar] [CrossRef]
- Yohannan, J.P.; Vidyasagar, K. Syntheses, structural variants and characterization of AInM′S4 (A= alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds. J. Solid State Chem. 2016, 238, 291–302. [Google Scholar] [CrossRef]
- Nakamura, Y.; Nakai, I.; Nagashima, K. Preparation and characterization of the new quaternary chalcogenides Tl-III-IV-S4 (III = Al, Ga, In; IV = Si, Ge). Mater. Res. Bull. 1984, 19, 563–570. [Google Scholar] [CrossRef]
- Khyzhun, O.Y.; Parasyuk, O.V.; Tsisar, O.V.; Piskach, L.V.; Myronchuk, G.L.; Levytskyy, V.O.; Babizhetskyy, V.S. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure. J. Solid State Chem. 2017, 254, 103–108. [Google Scholar] [CrossRef]
- Khyzhun, O.Y.; Babizhetskyy, V.S.; Kityk, I.V.; Piasecki, M.; Lakshminarayana, G.; Levytskyy, V.O.; Tsisar, O.V.; Piskach, L.V.; Parasyuk, O.V.; Naggar, A.M.E.L.; et al. Albassam Thallium indium germanium sulphide (TlInGe2S6) as efficient materials for nonlinear optical operation. J. Alloys Compd. submitted.
- Khyzhun, O.Y.; Fedorchuk, A.O.; Kityk, I.V.; Piasecki, M.; Mozolyuk, M.Y.; Piskach, L.V.; Parasyuk, O.V.; ElNaggar, A.M.; Albasssam, A.A.; Karasinski, P. Electronic structure and laser induced piezoelectricity of a new quaternary compound TlInGe3S8. Mater. Chem. Phys. 2017. [Google Scholar] [CrossRef]
- Akselrud, L.; Grin, Y. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014, 47, 803–805. [Google Scholar] [CrossRef]
- Rajagopal, S.; Bharaneswari, M.; Nataraj, D.; Khyzhun, O.Y.; Djaoued, Y. Crystal structure and electronic properties of facile synthesized Cr2O3 nanoparticles. Mater. Res. Express 2016, 3, 095019. [Google Scholar] [CrossRef]
- Bozhko, V.V.; Tretyak, A.P.; Parasyuk, O.V.; Ocheretova, V.A.; Khyzhun, O.Y. X-ray spectroscopy study of the electronic structure of non-centrosymmetric Ag2 CdSnS4 single crystal. Opt. Mater. 2014, 36, 1396–1401. [Google Scholar] [CrossRef]
- Piasecki, M.; Myronchuk, G.L.; Zamurueva, O.V.; Khyzhun, O.Y.; Parasyuk, O.V.; Fedorchuk, A.O.; Albassam, A.; El-Naggar, A.M.; Kityk, I.V. Huge operation by energy gap of novel narrow band gap Tl1−xIn1−xBxSe2 (B = Si, Ge): DFT, X-ray emission and photoconductivity studies. Mater. Res. Express 2016, 3, 025902. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Pavlyuk, V.V.; Khyzhun, O.Y.; Kozer, V.R.; Myronchuk, G.L.; Sachanyuk, V.P.; Dmytriv, G.S.; Krymus, A.; Kityk, I.V.; El-Naggar, A.M.; et al. Synthesis and structure of novel Ag2 Ga2 SiSe6 crystals: Promising materials for dynamic holographic image recording. RSC Adv. 2016, 6, 90958–90966. [Google Scholar] [CrossRef]
- Bekenev, V.L.; Bozhko, V.V.; Parasyuk, O.V.; Davydyuk, G.E.; Bulatetska, L.V.; Fedorchuk, A.O.; Kityk, I.V.; Khyzhun, O.Y. Electronic structure of non-centrosymmetric AgCd2GaS4 and AgCd2GaSe4 single crystals. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 559–566. [Google Scholar] [CrossRef]
- Khyzhun, O.Y.; Zaulychny, Y.V.; Zhurakovsky, E.A. Electronic structure of tungsten and molybdenum germanides synthesized at high pressures. J. Alloys Compd. 1996, 244, 107–112. [Google Scholar] [CrossRef]
- Parasyuk, O.; Piskach, L.; Levytskyy, V.; Babizhetskyy, V. TlGaSn2Se6—A new quaternary representative of the TlInGe2Se6 structure type. In Proceedings of the XIII International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, 25–29 September 2016; p. 89. [Google Scholar]
- Levytskyy, V.; Babizhetskyy, V.; Piskach, L.; Parasyuk, O. Crystal structure of new quaternary selenide TlInGe2Se6. In Proceedings of the VIII International Workshop “Relaxed, Nonlinear and Acoustic Optical Processes and Materials, Lutsk–Lake Svityaz, Ukraine, 1–4 June 2016; pp. 51–53. [Google Scholar]
- Brandenburg, K. DIAMOND, Crystal Impact; H. Putz & K. Brandenburg GbR: Bonn, Germany, 2006. [Google Scholar]
- Dobrovolsky, V.D.; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH2 films obtained by direct hydrogenation from gaseous phase of metallic Mg. J. Electron Spectrosc. Relat. Phenom. 2017, 215, 28–35. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.E.; Sobol, P.E.; Bomben, K.E. Handbook of X-ray Photoelectron Spectroscopy; Chastian, J., Ed.; Perkin-Elmer: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Khyzhun, O.Y. XPS Study of the Electronic Structure of Nb1.27Se2. Metallofiz. Noveishie Tekhnol. 2002, 24, 141–149. [Google Scholar]
- Morgan, W.E.; van Wazer, J.R. Binding energy shifts in the X-ray photoelectron spectra of a series of related Group IVa compounds. J. Phys. Chem. 1973, 77, 964–969. [Google Scholar] [CrossRef]
- Taylor, J.A.; Lancaster, G.M.; Rabalais, J.W. Chemical reactions of N2+ ions beams with group IV elements and their oxides. J. Electron Spectrosc. Relat. Phenom. 1978, 13, 435–444. [Google Scholar] [CrossRef]
- Briggs, D.; Seach, P.M. Auger and X-ray Photoelectron Spectroscopy. In Practical Surface Analysis, 2nd ed.; John Willey & Sons Ltd.: Chichester, UK, 1990; Volume 1. [Google Scholar]
- Pankove, J.I. Optical Process in Semiconductors; Dover: NewYork, NY, USA, 1975; Volume 35. [Google Scholar]
- Kungumadevi, L.; Sathyamoorthy, R. Structural, Electrical, and Optical Properties of PbTe Thin Films Prepared by Simple Flash Evaporation Method. Adv. Condens. Matter Phys. 2012. [Google Scholar] [CrossRef]
- Gürbulak, B.; Duman, S. Urbach tail and optical characterization of gadolinium-doped TlGaSe2 single crystals. Phys. Scr. 2008, 77, 025702. [Google Scholar] [CrossRef]
- Grivickas, V.; Gavryushin, V.; Grivickas, P.; Galeckas, A.; Bikbajevas, V.; Gulbinas, K. Optical absorption related to Fe impurities in TlGaSe2. Phys. Status Solidi A 2011, 208, 2186–2192. [Google Scholar] [CrossRef]
- Acikgoz, M.; Kazan, S.; Mikailov, F.A.; Mammadov, T.G.; Aktas, B. Structural phase transitions in Fe3+ doped ferroelectric TlGaSe2 crystal. Solid State Commun. 2008, 145, 539. [Google Scholar] [CrossRef]
- Guca, A.; Levcenko, S.; Dermenji, L.; Gurieva, G.; Schorrb, S.; Syrbu, N.N.; Arushanov, E. Excitonic and band-band transitions of Cu2ZnSiS4 determined from reflectivity spectra. Solid State Commun. 2014, 190, 44–48. [Google Scholar] [CrossRef]
- Rosmus, K.A.; Brant, J.A.; Wisneski, S.D.; Clark, D.J.; Kim, Y.S.; Jang, J.I.; Brunetta, C.D.; Zhang, J.H.; Srnec, M.N.; Aitken, J.A. Optical nonlinearity in Cu2CdSnS4 and α/β-Cu2ZnSiS4: Diamond-like semiconductors with high laser-damage thresholds. Inorg. Chem. 2014, 53, 7809–7811. [Google Scholar] [CrossRef] [PubMed]
- Valakh, M.Y.; Yukhymchuk, V.O.; Babichuk, I.S.; Havryliuk, Y.O.; Parasyuk, O.V.; Piskach, L.V.; Litvinchuk, A.P. Vibrational spectroscopy of orthorhombic Cu2ZnSiS4 single crystal: Low-temperature polarized Raman scattering and first principle calculations. Vib. Spectrosc. 2017, 89, 81–84. [Google Scholar] [CrossRef]
- Kityk, I.V.; Myronchuk, G.L.; Parasyuk, O.V.; Krymus, A.S.; Rakus, P.; El-Naggar, A.M.; Albassam, A.A.; Lakshminarayana, G.; Fedorchuk, A.O. Specific features of photoconductivity and photoinduced piezoelectricity in AgGaGe3Se8 doped crystals. Opt. Mater. 2017, 63, 197–206. [Google Scholar] [CrossRef]
- Matsubara, M.; Schmehl, A.; Mannhart, J.; Schlom, D.G.; Fiebig, M. Giant third-order magneto-optical rotation in ferromagnetic EuO. Phys. Rev. B 2012, 86, 195127. [Google Scholar] [CrossRef]
- Yelisseyev, A.; Liang, F.; Isaenko, L.; Lobanov, S.; Goloshumova, A.; Lin, Z.S. Optical properties of LiGaSe2 noncentrosymmetric crystal. Opt. Mater. 2017, 72, 795–804. [Google Scholar] [CrossRef]
Chemical formula | TlGaSn2Se6 |
---|---|
Space group | R3 (No. 146) |
Structure type | TlInGe2Se6 |
Pearson symbol and Z | hR30, 3 |
Unit cell parameters | |
a, Å | 10.3289(2) |
c, Å | 9.4340(4) |
V, Å3 | 871.64(6) |
Calculated density, g cm−3 | 5.6301(4) |
Diffractometer | DRON 4-13 |
Radiation, λ | Cu Kα, 1.54185 Å |
Mode of refinement | Full with fixed elements per cycle |
2θ limits, step; (sinθ/λ)max | 8.80–98.82, 0.02; 0.493 |
Detector | NaI(Tl) scintillation counter |
Scanning time/step, 2θ and sec | 0.02, 20 |
Number of reflections | 199 |
Number of parameters (all/free) | 29/5 |
Scale factor | 0.31792(1) |
Goodness-of-fit | 1.99 |
Rb(I), RP, RPw | 4.8%, 4.1%, 5.4% |
Atom | Site | X | y | z | Biso, Å2 |
---|---|---|---|---|---|
Tl | 3 a | 0 | 0 | 0.0000 (5) | 1.25 (2) |
M | 9 b | 0.1944 (4) | 0.2355 (5) | 0.3882 (4) | 0.87 (2) |
Se1 | 9 b | −0.0456 (5) | 0.2085 (5) | 0.2874 (4) | 1.11 (2) |
Se2 | 9 b | 0.3919 (6) | 0.4804 (5) | 0.3159 (5) | 0.90 (2) |
Atoms | Distance | Atoms | Distance |
---|---|---|---|
Tl: – 3 Se1 | 3.636 (5) | M: – Se2 | 2.422 (7) |
3 Se1 | 3.810 (5) | Se2 | 2.468 (6) |
3 Se2 | 3.835 (6) | Se1 | 2.518 (6) |
3 Se2 | 4.022 (6) | Se2 | 2.537 (6) |
Se1: – M | 2.518 (6) | Se2: – M | 2.422 (7) |
M | 2.537 (6) | M | 2.468 (6) |
Tl | 3.636 (5) | Tl | 3.835 (6) |
Tl | 3.810 (5) | Tl | 4.022 (6) |
Core-Level | TlGaSn2Se6/Pristine Surface | TlGaSn2Se6/Ar+ Ion-Bombarded Surface |
---|---|---|
Tl 5d5/2 | 113.17 | 13.26 |
Ga 3d | 19.61 | 19.66 |
Sn 4d | 25.81 | 25.57 |
Se 3d | 54.25 | 54.22 |
Tl 4f7/2 | 118.44 | 118.35 |
Tl 4f5/2 | 122.84 | 122.77 |
Se 3p3/2 | 160.47 | 160.51 |
Se 3p1/2 | 165.61 | 165.77 |
Tl 4d5/2 ** | 385.6 | 385.5 |
Tl 4d3/2 ** | 406.3 | 406.2 |
Sn 3d5/2 | 486.35 | 486.10 |
Sn 3d3/2 | 494.76 | 494.52 |
Ga 2p3/2 ** | 1117.8 | 1117.7 |
Ga 2p1/2 ** | 1144.7 | 1144.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parasyuk, O.V.; Babizhetskyy, V.S.; Khyzhun, O.Y.; Levytskyy, V.O.; Kityk, I.V.; Myronchuk, G.L.; Tsisar, O.V.; Piskach, L.V.; Jedryka, J.; Maciag, A.; et al. Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators. Crystals 2017, 7, 341. https://doi.org/10.3390/cryst7110341
Parasyuk OV, Babizhetskyy VS, Khyzhun OY, Levytskyy VO, Kityk IV, Myronchuk GL, Tsisar OV, Piskach LV, Jedryka J, Maciag A, et al. Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators. Crystals. 2017; 7(11):341. https://doi.org/10.3390/cryst7110341
Chicago/Turabian StyleParasyuk, Oleh V., Volodymyr S. Babizhetskyy, Oleg Y. Khyzhun, Volodymyr O. Levytskyy, Iwan V. Kityk, Galyna L. Myronchuk, Oksana V. Tsisar, Lyudmyla V. Piskach, Jaroslaw Jedryka, Artur Maciag, and et al. 2017. "Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators" Crystals 7, no. 11: 341. https://doi.org/10.3390/cryst7110341
APA StyleParasyuk, O. V., Babizhetskyy, V. S., Khyzhun, O. Y., Levytskyy, V. O., Kityk, I. V., Myronchuk, G. L., Tsisar, O. V., Piskach, L. V., Jedryka, J., Maciag, A., & Piasecki, M. (2017). Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators. Crystals, 7(11), 341. https://doi.org/10.3390/cryst7110341