Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations
Abstract
:1. Introduction
2. Thermal Evolution of the Structures of NLO Borates
2.1. Rigity and Flexibility of B–O Groups
2.2. Review of Temperature-Dependent Structural Studies of NLO Borates from Single-Crystal LTXRD and HTXRD Data
2.2.1. NLO Borates under Study
2.2.2. Systematic Variations with Temperature of Boron–Oxygen Bond Lengths in NLO Borates
2.2.3. Thermal Invariability of Rigid B–O Groups in NLO Borates
2.2.4. Non-Rigid Cyclic Groups in NLO Borates
2.3. Anisotropic Thermal Expansion of Borates from Powder HTXRD Data
3. Discussion. Desirable Crystal Chemical Criteria for NLO Borates
3.1. Anharmonicity of Atomic Vibrations in NLO Materials
3.2. High Mobility of Cations in NLO Borates
3.3. Self-Assembly of Rigid Groups into NLO Borates
3.4. Strong Anisotropy of the Thermal Expansion in NLO Borates
3.5. Reasons for Strong Anisotropy of the Thermal Expansion of Borates
3.6. “Rigidity” of Rigid Groups
4. New Temperature-Dependent Structural Studies of NLO Borates from Single-Crystal LTXRD and HTXRD Data
4.1. β-BaB2O4 (98, 123, 173, 223, 295, 323, 693 K) and α-BaB2O4 (295, 673 K)
4.2. LiB3O5 (98, 123, 148, 173, 198, 223, 248, 273, 298, 293, 500, 650 K)
4.3. K2Al2B2O7 (98, 123, 173, 223, 298, 348 K)
5. Materials and Methods
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bloembergen, N. Nonlinear Optics; Benjamin: New York, NY, USA, 1965. [Google Scholar]
- Schawlow, A.; Siegman, T. Handbook of Nonlinear Optical Crystals, 3rd ed.; Springer: Berlin, Germany, 1999. [Google Scholar]
- Nikogosyan, D.N. Nonlinear Optical Crystals: A Complete Survey; Springer: New York, NY, USA, 1999. [Google Scholar]
- Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Z.; Wang, D.; Cao, H. Molecular Structures and Second-Order Nonlinear Optical Properties of Ionic Organic Crystal Materials. Crystals 2016, 6, 158. [Google Scholar] [CrossRef]
- Baldwin, G. Nonlinear Optics; Plenum: New York, NY, USA, 1969. [Google Scholar]
- Zernicke, F.; Midwinter, J. Applied Nonlinear Optics; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Shen, Y. The Principles of Nonlinear Optics; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Yariv, A.; Yeh, P. Optical Waves in Crystals; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Kurtz, S.K.; Perry, J.T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 39, 3798–3813. [Google Scholar] [CrossRef]
- Chen, C.T.; Wu, Y.C.; Li, R.K. The relationship between the structural type of anionic group and SHG effect in boron-oxygen compounds. Chin. Phys. 1985, 2, 389–392. [Google Scholar]
- Chen, C.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Uda, S.; Yoshimura, M.; et al. Nonlinear Optical Borate Crystals; Willey-VCH Verlag GmbH & Co. KGaA: Weinhaim, Germany, 2012. [Google Scholar]
- Kidyarov, B.I.; Atuchin, V.V. Interrelationship of micro- and macro-structure with physical properties of binary acentric ferroelastic and paraelastic oxide crystal. Ferroelectrics 2007, 360, 104–107. [Google Scholar] [CrossRef]
- Dewey, C.F.; Cook, W.R.; Hodgson, R.T.; Wynne, J.J. Frequency doubling in KB5O8–4H2O and NH4B5O8–4H2O to 217.3 nm. Appl. Phys. Lett. 1975, 26, 714–716. [Google Scholar] [CrossRef]
- Becker, P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10, 979–992. [Google Scholar] [CrossRef]
- Chen, C.T.; Wu, B.C.; Jiang, A.D.; You, G.M. A new ultraviolet SHG crystal β-BaB2O4. Sci. Sin. 1985, 18, 235–243. [Google Scholar]
- Chen, C.T.; Wu, Y.C.; Jiang, A.D.; Wu, B.C.; You, G.M.; Li, R.K.; Lin, S.J. New nonlinear-optical crystal LiB3O5. J. Opt. Soc. Am. 1989, 6, 616–621. [Google Scholar] [CrossRef]
- Wu, Y.C.; Sasaki, T.; Nakai, S.; Yokotani, A.; Tang, H.; Chen, C. CsB3O5: A new nonlinear optical crystal. Appl. Phys. Lett. 1993, 62, 2614–2615. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Wu, B.; Wu, K. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 1995, 373, 322. [Google Scholar] [CrossRef]
- Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. Nonlinear optical properties of cesium lithium borate. Jpn. J. Appl. Phys. 1995, 34, L296–L298. [Google Scholar] [CrossRef]
- Hu, Z.G.; Higashiyama, T.; Yoshimura, M.; Yap, Y.K.; Mori, Y.; Sasaki, T. A new nonlinear optical borate crystal K2Al2B2O7 (KAB). Jpn. J. Appl. Phys. 1998, 37, L1093–L1094. [Google Scholar] [CrossRef]
- Ye, N.; Zeng, W.R.; Jiang, J.; Wu, B.C.; Chen, C.T.; Feng, B.H.; Zhang, X.L. New nonlinear optical crystal K2Al2B2O7. J. Opt. Soc. Am. 2000, 17, 764–768. [Google Scholar] [CrossRef]
- Hellwig, H.; Liebertz, J.; Bohaty, L. Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BIBO). Solid State Commun. 1999, 109, 249–251. [Google Scholar] [CrossRef]
- Barbier, J.; Penin, N.; Denoyer, A.; Cranswick, L.M. BaBiBO4, a novel non-centrosymmetric borate oxide. Solid State Sci. 2005, 7, 1055–1061. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database (ICSD); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016.
- Bubnova, R.S.; Filatov, S.K. High-temperature borate crystal chemistry. Z. Kristallogr. 2013, 228, 395–428. [Google Scholar] [CrossRef]
- Wright, A.C. Borate structures: Crystalline and vitreous. Phys. Chem. Glass Eur. J. Glass Sci. Technol. B 2010, 51, 1–39. [Google Scholar]
- Burns, P.S.; Grice, J.D.; Hawthorne, F.C. Borate minerals. I. Polyhedral clasters and fundamental building blocks. Can. Miner. 1995, 33, 1131–1151. [Google Scholar]
- Touboul, M.; Penin, N.; Nowogrocki, G. Borates: A survey of main trends concerning crystal-chemistry, polymorphism and dehydration process of alkaline and pseudo-alkaline borates. Solid State Sci. 2003, 5, 1327–1342. [Google Scholar] [CrossRef]
- Yuan, G.; Xue, D. Crystal chemistry of borates: The classification and algebraic description by topological type of fundamental building blocks. Acta Cryst. 2007, B63, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, F.C.; Burns, P.C.; Grice, J.D. The crystal chemistry of boron. Rev. Miner. 1996, 33, 41–116. [Google Scholar]
- Strunz, H. Classification of borate minerals. Eur. J. Miner. 1997, 9, 225–232. [Google Scholar]
- Grice, J.D.; Burns, P.C.; Hawthorne, F.C. Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. Can. Miner. 1999, 37, 731–762. [Google Scholar]
- Filatov, S.K.; Bubnova, R.S. Borate Crystal Chemistry. Phys. Chem. Glass 2000, 41, 216–224. [Google Scholar]
- Becker, P.A. A contribution to borate crystal chemistry: Rules for the occurrence of polyborate anion types. Z. Kristallogr. 2001, 216, 523–533. [Google Scholar] [CrossRef]
- Parthé, E. Calculation of the BO3 triangle to BO4 tetrahedron ratio in borates. Z. Kristallogr. 2002, 217, 179–200. [Google Scholar] [CrossRef]
- Parthé, E. New examples of crystallized and amorphous borates where the ratio of BO3 triangles to BO4 tetrahedra can be calculated from the chemical formula. J. Alloys Compd. 2004, 367, 126–131. [Google Scholar] [CrossRef]
- Belokoneva, E.L. Borate crystal chemistry in terms of the extended OD theory: Topology and symmetry analysis. Cryst. Rev. 2005, 11, 151–198. [Google Scholar] [CrossRef]
- Belokoneva, E.L. Systematic, properties, and structure predictions of new borate materials. Cryst. Res. Technol. 2008, 43, 1173–1182. [Google Scholar] [CrossRef]
- Yu, D.; Xue, D. Bond analyses of borates from the Inorganic Crystal Structure Database. Acta Cryst. 2006, B62, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, F.C. The structure hierarchy hypothesis. Min. Mag. 2014, 78, 957–1027. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, R.S.; Filatov, S.K. Strong anisotropic thermal expansion in borates. Phys. Stat. Solid. 2008, 245, 2469–2476. [Google Scholar] [CrossRef]
- Bubnova, R.; Filatov, S. High-Temperature Crystal Chemistry Borates and Borosilicates; Nauka: State Petersburg, Russian, 2008. (In Russian) [Google Scholar]
- Filatov, S.K.; Bubnova, R.S. Atomic nature of the high anisotropy of borate thermal expansion. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. 2015, 56, 24–35. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Filatov, S.K. Self-assembly and high anisotropy thermal expansion of compounds consisting of TO3 triangular radicals. Struct. Chem. 2016, 27, 1647–1662. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Shepelev, J.F.; Sennova, N.A.; Filatov, S.K. Thermal behavior of the rigid-oxygen groups in the a-Na2B8O13 crystal structure. Z. Crystallogr. 2002, 217, 444–450. [Google Scholar]
- Shepelev, Y.F.; Bubnova, R.S.; Filatov, S.K.; Sennova, N.A.; Pilneva, N.A. LiB3O5 crystal structure at 20, 227 and 377 °C. JSSC 2005, 178, 2987–2997. [Google Scholar] [CrossRef]
- Filatov, S.; Bubnova, R.; Shepelev, Y.; Anderson, J.; Smolin, Y. The crystal structure of high-temperature α-CsB5O8 modification at 20, 300, and 500 °C. Cryst. Res. Technol. 2005, 40, 65–72. [Google Scholar] [CrossRef]
- Lu, S.F.; Huang, Z.X.; Huang, J.L. Meta-barium borate, II-BaB2O4, at 163 and 293 K. Acta Crystallogr. C 2006, 62, i73–i75. [Google Scholar] [CrossRef] [PubMed]
- Sennova, N.A.; Bubnova, R.S.; Shepelev, Y.F.; Filatov, S.K.; Yakovleva, O.I. Li2B4O7 Crystal structure in anharmonic approximation at 20, 200, 400 and 500 °C. J. Alloys Compd. 2007, 428, 290–296. [Google Scholar] [CrossRef]
- Sennova, N.A.; Bubnova, R.S.; Cordier, G.; Albert, B.; Filatov, S.K.; Isaenko, L. Temperature dependent changes of the crystal structure of Li2B4O7. Z. Anorg. Alloys Chem. 2008, 634, 2601–2607. [Google Scholar] [CrossRef]
- Adamiv, V.T.; Burak, Y.V.; Teslyuk, I.M. The crystal structure of Li2B4O7 compound in the temperature range 10–290 K. J. Alloys Compd. 2009, 475, 869–873. [Google Scholar] [CrossRef]
- Senyshyn, A.; Schwarz, B.; Lorenz, T.; Adamiv, V.T.; Burak, Y.V.; Banys, J.; Grigalaitis, R.; Vasylechko, L.; Ehrenberg, H.; Fuess, H. Low-temperature crystal structure, specific heat, and dielectric properties of lithium tetraborate Li2B4O7. J. Appl. Phys. 2010, 108, 093524. [Google Scholar] [CrossRef]
- Senyshyn, A.; Boysen, H.; Niewa, R.; Banys, J.; Kinka, M.; Burak, Y.; Adamiv, V.; Izumi, F.; Chumak, I.; Fuess, H. High-temperature properties of lithium tetraborate Li2B4O7. J. Phys. D Appl. Phys. 2012, 45, 175305. [Google Scholar] [CrossRef]
- Sennova, N.A.; Cordier, G.; Albert, B.; Filatov, S.K.; Bubnova, R.S.; Isaenko, L.I.; Prosenc, M.H. Temperature- and moisture-dependency of CsLiB6O10. A new phase, β-CsLiB6O10. Z. Kristallogr.-Cryst. Mater. 2010, 229, 741–751. [Google Scholar] [CrossRef]
- Fofanova, M.; Bubnova, R.; Albert, B.; Filatov, S.; Cordier, G.; Egorysheva, A. Structural changes in metastable γ-Na2B4O7 between-150 °C and 720 °C. Z. Kristallogr. 2013, 228, 520–525. [Google Scholar] [CrossRef]
- Stein, W.D.; Cousson, A.; Becker, P.; Bohatý, L.; Braden, M. Temperature-dependent X-ray and neutron diffraction study of BiB3O6. Z. Kristallogr. 2007, 222, 680–689. [Google Scholar] [CrossRef]
- Volkov, S.N.; Bubnova, R.S.; Zalisskii, V.G.; Egorysheva, A.V.; Volodin, V.D.; Filatov, S.K. Thermal behavior of borate BaBiBO4. Glass Phys. Chem. 2015, 41, 622–629. [Google Scholar] [CrossRef]
- Dinnebier, R.E.; Hinrichsen, B.; Lennie, A.; Jansen, M. High-pressure crystal structure of the non-linear optical compound BiB3O6 from two-dimensional powder diffraction data. Acta Cryst. 2009, B65, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mighell, A.D.; Perloff, A.; Block, S. The crystal structure of the high temperature form of barium borate, BaO∙B2O3. Acta Cryst. 1966, 20, 819–823. [Google Scholar] [CrossRef]
- Krogh-Moe, J. Structural interpretation of melting point depression in the sodium borate system. Phys. Chem. Glasses 1962, 3, 101–105. [Google Scholar]
- Krogh-Moe, J. Interpretation of the infra-red spectra of boron oxide and alkali borate glasses. Phys. Chem. Glasses 1965, 6, 46–54. [Google Scholar]
- Huppertz, H.; Eltz, B. Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra. J. Am. Chem. Soc. 2002, 124, 9376–9377. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, H. High-pressure preparation, crystal structure, and properties of RE4B6O15 (RE = Dy, Ho) with an extension of the “Fundamental Building Block” descriptors. Z. Naturforsch. 2003, 58b, 278–290. [Google Scholar]
- Huppertz, H. New synthetic discoveries via high-pressure solid-state chemistry. Chem. Commun. 2011, 47, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Hazen, R.M.; Prewitt, C.T. Effect of temperature and pressure on interatomic distances in oxygen-based minerals. Am. Miner. 1977, 62, 309–315. [Google Scholar]
- Hazen, R.M.; Finger, L.W. Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure, 1st ed.; Wiley: London, UK, 1982. [Google Scholar]
- Christ, C.L.; Clark, J.R. A crystal-chemical classification of borate structures with emphasis on hydrated borates. Phys. Chem. Miner. 1977, 2, 59–87. [Google Scholar] [CrossRef]
- Bokii, G.; Kravchenko, V. Crystal-chemical classification of borates. J. Struct. Chem. 1966, 7, 860–877. [Google Scholar] [CrossRef]
- Wu, H.; Yu, H.; Pan, S.; Huang, Z.; Yang, Z.; Su, X.; Poeppelmeier, K.R. Cs2B4SiO9: A Deep-Ultraviolet Nonlinear Optical Crystal. Angew. Chem. Int. Ed. 2013, 52, 3406–3410. [Google Scholar] [CrossRef] [PubMed]
- Vitzthum, D.; Wurst, K.; Prock, J.; Brüggeller, P.; Huppertz, H. The New Indium Borate In19B34O74(OH)11 with T2 Supertetrahedra. Inorg. Chem. 2016, 55, 11473–11478. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, R.; Bohatý, L.; Liebertz, J. Die kristallstruktur von wismutborat, BiB3O6. Acta Cryst. 1984, C40, 343–344. [Google Scholar] [CrossRef]
- Downs, R.T.; Gibbs, G.V.; Bartelmehs, K.L.; Boisen, M.B. Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am. Miner. 1992, 77, 751–757. [Google Scholar]
- Cruickshank, D.W.J. Errors in bond lengths due to rotational oscillations of molecules. Acta Cryst. 1997, 9, 757–758. [Google Scholar] [CrossRef]
- Busing, W.R.; Levy, H.A. The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Cryst. 1964, 17, 142–146. [Google Scholar] [CrossRef]
- Downs, R.T. Analysis of harmonic displacement factors. Rev. Miner. 2000, 41, 61–87. [Google Scholar] [CrossRef]
- Hazen, R.M.; Downs, R.T.; Prewitt, C.T. Principles of comparative crystal chemistry. Rev. Miner. 2000, 41, 1–33. [Google Scholar] [CrossRef]
- Sennova, N.; Albert, B.; Bubnova, R.; Krzhizhanovskaya, M.; Filatov, S. Anhydrous lithium borate, Li3B11O18, crystal structure, phase transition and thermal expansion. Z. Kristallogr. 2014, 229, 497–504. [Google Scholar] [CrossRef]
- Mathews, M.D.; Tyagi, A.K.; Moorthy, P.N. High-temperature behaviour of lithium borates: Part II: High-temperature X-ray diffractometric and dilatometric studies. Thermochim. Acta 1998, 319, 113–121. [Google Scholar] [CrossRef]
- Wei, L.; Guiqing, D.; Qingzhen, H.; An, Z.; Jingkui, L. Anisotropic thermal expansion of LiB3O5. J. Phys. D Appl. Phys. 1990, 23, 1073. [Google Scholar] [CrossRef]
- Krzhizhanovskaya, M.G.; Sennova, N.A.; Bubnova, R.S.; Filatov, S.K. Thermal transformations of minerals: Borax–tincalconite–kernite. Proc. Russ. Miner. Soc. 1999, 128, 115–122. [Google Scholar]
- Volkov, S.N.; Filatov, S.K.; Bubnova, R.S.; Ugolkov, V.L.; Svetlyakova, T.N.; Kokh, A.E. Thermal expansion and order-disorder polymorphic transformation in the family of borates BaNaMe(BO3)2, Me = Sc, Y. Glass Phys. Chem. 2012, 38, 162–171. [Google Scholar] [CrossRef]
- Sennova, N.A.; Bubnova, R.S.; Filatov, S.K.; Polyakova, I.G. High-temperature crystal chemistry of α-Na2B4O7 and β-NaB3O5 layered borates. Glass Phys Chem. 2007, 33, 217–225. [Google Scholar] [CrossRef]
- Bubnova, R.; Albert, B.; Georgievskaya, M.; Krzhizhanovskaya, M.; Hofmann, K.; Filatov, S. X-ray powder diffraction studies and thermal behaviour of NaK2B9O15, Na(Na.17 K.83)2B9O15, and (Na.80K.20)K2B9O15. J. Solid State Chem. 2006, 179, 2954–2963. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Cheng, X.; Hu, X.; Jiang, H.; Liu, Y.; Chen, C. Growth and properties of K2Al2B2O7 crystal. Opt. Mater. 2003, 23, 357–362. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Polyakova, I.G.; Anderson, Y.E.; Filatov, S.K. Polymorphism and thermal expansion of the MB5O8 crystalline modifications. Phys. Chem. Glasses 1999, 25, 183–194. [Google Scholar]
- Bubnova, R.S.; Fundamenskii, V.S.; Filatov, S.K.; Polyakova, I.G. Crystal Structure and Thermal Behavior of KB3O5. Dokl. Phys. Chem. 2004, 398, 249–253. [Google Scholar] [CrossRef]
- Anderson, Y.E.; Filatov, S.K.; Polyakova, I.G.; Bubnova, R.S. Thermal Behavior of M+B5O6(OH)4·2H2O (M+ = K, Rb, Cs) and Polymorphic Transformations of CsB5O8. Phys. Chem. Glasses 2004, 30, 450–460. [Google Scholar] [CrossRef]
- Krzhizhanovskaya, M.G.; Bubnova, R.S.; Bannova, I.I.; Filatov, S.K. Crystal structure of Rb2Ba4O7. Crystallogr. Rep. 1997, 42, 226–231. [Google Scholar]
- Krzhizhanovskaya, M.G.; Bannova, I.I.; Filatov, S.K.; Bubnova, R.S. Crystal structure and thermal expansion of Rb5B19O31. Crystallogr. Rep. 1999, 44, 187–192. [Google Scholar]
- Bubnova, R.S.; Krivovichev, S.V.; Shakhverdova, I.P.; Filatov, S.K.; Burns, P.C.; Krzhizhanovskaya, M.G.; Polyakova, I.G. Synthesis, crystal structure and thermal behavior of Rb3B7O12, a new compound. Solid State Sci. 2002, 4, 985–992. [Google Scholar] [CrossRef]
- Krjijanovskaya, M.G.; Bubnova, R.S.; Filatov, S.K.; Belger, A.; Paufler, P. Crystal structure and thermal expansion of β-RbB5O8 from powder diffration data. Z. Kristallogr. 2000, 215, 740–743. [Google Scholar]
- Bubnova, R.S.; Krzhizhanovskaya, M.G.; Polyakova, I.G.; Trofimov, V.B.; Filatov, S.K. Thermal deformations and phase transitions of RbB3O5. Inorg. Mater. 1998, 34, 1119–1124. [Google Scholar]
- Krizhizhanoivskaya, M.G.; (Saint-Petersburg State University, Saint-Petersburg, Russia); Bubnova, R.S.; (Grebenshchikov Institute of Silicate Chemistry, Saint-Petersburg, Russia); Filatov, S.K.; (Saint-Petersburg State University, Saint-Petersburg, Russia). Personal communication, 2010.
- Bubnova, R.; Dinnebier, R.E.; Filatov, S.; Anderson, J. Crystal structure, thermal and compositional deformations of β-CsB5O8. Cryst. Res. Technol. 2007, 42, 143–150. [Google Scholar] [CrossRef]
- Anderson, J.E.; Bubnova, R.S.; Filatov, S.K.; Ugolkov, V.L.; Britvin, S.N. Thermal investigation of ammonioborite (NH4)3[B15O20(OH)8]·4H2O. Phys. Chem. Glasses 2009, 35, 191–198. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Anderson, J.E.; Krzhizhanovskaya, M.G.; Filatov, S.K. Crystal structure and thermal expansion of ammonium pentaborate NH4B5O8. Phys. Chem. Glasses 2010, 36, 369–375. [Google Scholar] [CrossRef]
- Anderson, Yu. E.; Bubnova, R.S.; Filatov, S.K.; Polyakova, I.G.; Krzhizhanovskaya, M.G. Thermal behaviour of larderellite, NH4[B5O7(OH)2]·H2O. Proc. Russian Mineral. Soc. 2005, 134, 103–109. (In Russian) [Google Scholar]
- Kondratieva, V.V.; Filatov, S.K. Teplovoe rasshirenie gidroboratsita CaMg[B3O4(OH)3]2·3H2O. Izvestia AN SSSR. Neorgan. Mater. 1986, 22, 273–276. (In Russian) [Google Scholar]
- Filatov, S.K.; Kondratieva, V.V. Anomalnoe teplovoe rasshirenie kolemanita Ca[B3O4(OH)3]∙H2O. Izvestia AN SSSR. Neorgan. Mater. 1980, 16, 475–481. (In Russian) [Google Scholar]
- Filatov, S.K.; Krzhizhanovskaya, M.G.; Bubnova, R.S.; Shablinskii, A.P.; Belousova, O.L.; Firsova, V.A. Thermal expansion and structural complexity of strontium borates. Struct. Chem. 2016, 27, 1663–1671. [Google Scholar] [CrossRef]
- Volkov, S.N.; Bubnova, R.S.; Dusek, M.; Krzhizhanovskaya, M.G.; Ugolkov, V.L.; Obozova, E.D. Polymorphic transition of Sr2B2O5 pyroborate. In Proceedings of the VIII National Crystal Chemical Conference, Suzdal, Russia, 30 May–3 June 2016.
- Han, S.; Wang, J.; Li, J.; Guo, Y.; Wang, Y.; Zhao, L.; Zhang, Y.; Boughton, R.I. Flux growth and thermal properties of LiBaB9O15 single crystal. Mater. Res. Bull. 2012, 47, 464–468. [Google Scholar] [CrossRef]
- Filatov, S.K.; Nikolaeva, N.V.; Bubnova, R.S.; Polyakova, I.G. Thermal expansion of β-BaB2O4 and BaB4O7 borates. Glass Phys. Chem. 2006, 32, 471–478. [Google Scholar] [CrossRef]
- Volkov, S.N.; Bubnova, R.S.; Filatov, S.K.; Krivovichev, S.V. Synthesis, crystal structure and thermal expansion of a novel borate, Ba3Bi2(BO3)4. Z. Kristallogr. 2013, 228, 436–443. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Bubnova, R.S.; Volkov, S.N.; Krzhizhanovskaya, M.G.; Egorysheva, A.V.; Filatov, S.K. Preparation, crystal structure and thermal expansion of a novel layered borate, Ba2Bi3B25O44. J. Solid State Chem. 2012, 196, 11–16. [Google Scholar] [CrossRef]
- Filatov, S.; Shepelev, Y.; Bubnova, R.; Sennova, N.; Egorysheva, A.V.; Kargin, Y.F. The study of Bi3B5O12: synthesis, crystal structure and thermal expansion of oxoborate Bi3B5O12. J. Solid State Chem. 2004, 177, 515–522. [Google Scholar] [CrossRef]
- Krzhizhanovskaya, M.G.; Bubnova, R.S.; Egorysheva, A.V.; Kozin, M.S.; Volodin, V.D.; Filatov, S.K. Synthesis, crystal structure and thermal behavior of a novel oxoborate SrBi2B4O10. J. Solid State Chem. 2009, 182, 1260–1264. [Google Scholar] [CrossRef]
- Filatov, S.K.; Shepelev, Y.F.; Aleksandrova, Y.V.; Bubnova, R.S. Structure of bismuth oxoborate Bi4B2O9 at 20, 200, and 450°C. Russ. J. Inorg. Chem. 2007, 52, 21–27. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Shablinskii, A.P.; Volkov, S.N.; Filatov, S.K.; Krzhizhanovskaya, M.G.; Ugolkov, V.L. Crystal structures and thermal expansion of Sr1–xBaxBi2B2O7 solid solutions. Phys. Chem. Glasses 2016, 42, 337–348. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Krivovichev, S.V.; Filatov, S.K.; Egorysheva, A.V.; Kargin, Y.F. Preparation, crystal structure and thermal expansion of a new bismuth barium borate, BaBi2B4O10. J. Solid State Chem. 2007, 180, 596–603. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Alexandrova, J.V.; Krivovichev, S.V.; Filatov, S.K.; Egorysheva, A.V. Crystal growth, crystal structure of new polymorphic modification, β-Bi2B8O15 and thermal expansion of α-Bi2B8O15. J. Solid State Chem. 2010, 183, 458–464. [Google Scholar] [CrossRef]
- Becker, P.; Bohatý, L. Thermal expansion of bismuth triborate. Cryst. Res. Technol. 2001, 36, 1175–1180. [Google Scholar] [CrossRef]
- Biryukov, Y.P.; (Grebenshchikov Institute of Silicate Chemistry, Saint-Petersburg, Russia); Siidra, E.N.; (Saint-Petersburg State University, Saint-Petersburg, Russia); Filatov, S.K.; (Saint-Petersburg State University, Saint-Petersburg, Russia); Krzhizhanovskaya, M.G.; (Saint-Petersburg State University, Saint-Petersburg, Russia); Bubnova, R.S.; (Grebenshchikov Institute of Silicate Chemistry, Saint-Petersburg, Russia). Personal communication, 2016.
- Siidra, E.N.; Bubnova, R.S.; Krzhizhanovskaya, M.G. Synthesis and anisotropy of thermal expansion of polymorphic aragonite modification of λ-NdBO3. Fiz. Khim. Stekla 2012, 38, 881–884. [Google Scholar]
- Biryukov, Y.P.; Grebenshchikov Institute of Silicate Chemistry, Saint-Petersburg, Russia); Filatov, S.K.; (Saint-Petersburg State University, Saint-Petersburg, Russia); Krzhizhanovskaya, M.G.; (Saint-Petersburg State University, Saint-Petersburg, Russia); Bubnova, R.S.; (Grebenshchikov Institute of Silicate Chemistry, Saint-Petersburg, Russia). Personal communication, 2016.
- Biryukov, Y.P.; Bubnova, R.S.; Filatov, S.K.; Goncharov, A.G. Synthesis and thermal behavior of Fe3O2(BO4) oxoborate. Glass Phys. Chem. 2016, 42, 202–206. [Google Scholar] [CrossRef]
- Lou, Y.; Li, D.; Li, Z.; Jin, S.; Chen, X. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6. Sci. Rep. 2015, 5, 10996. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Molokeev, M.S.; Gong, P.; Yang, Y.; Wang, W.; Wang, S.; Wu, S.; Wang, Y.; Huang, R.; Li, L.; et al. Near-Zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13. Adv. Mater. 2016, 28, 7936–7940. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Jiang, X.; Huang, R.; Li, W.; Huang, C.; Lin, Z.; Li, L.; Chen, C. Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedra. Chem. Commun. 2014, 50, 13499–13501. [Google Scholar] [CrossRef] [PubMed]
- Segonds, P.; Boulanger, B.; Ménaert, B.; Zaccaro, J.; Salvestrini, J.P.; Fontana, M.D.; Moncorgé, R.; Porée, F.; Gadret, G.; Mangin, J.; et al. Optical characterizations of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals. Opt. Mater. 2007, 29, 975–982. [Google Scholar] [CrossRef]
- Jing, F.; Fu, P.; Wu, Y.; Zu, Y.; Wang, X. Growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate. Opt. Mater. 2008, 30, 1867–1872. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Li, Y.; Wu, Y.; Fu, P.; Wu, Y. Thermophysical Properties of a New Nonlinear Optical Na3La9O3(BO3)8 Crystal. Cryst. Growth Des. 2010, 10, 4965–4967. [Google Scholar] [CrossRef]
- Radaev, S.F.; Maximov, B.A.; Simonov, V.I.; Andreev, B.V.; D’yakov, V.A. Deformation density in lithium triborate, LiB3O5. Acta Cryst. 1992, B48, 154–160. [Google Scholar] [CrossRef]
- Xue, D.; Betzler, K.; Hesse, H. Chemical-bond analysis of the nonlinear optical properties of the borate crystals LiB3O5, CsLiB6O10, and CsB3O5. Appl. Phys. A 2002, 74, 779–782. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, M. Synthesis, Crystal Structure, and Nonlinear Optical Properties of a New Alkali and Alkaline Earth Metal Carbonate RbNa5Ca5(CO3)8. Crystals 2017, 7, 10. [Google Scholar] [CrossRef]
- Fröhlich, R. Crystal structure of the low-temperature form of BaB2O4. Z. Kristallogr. 1984, 168, 109–112. [Google Scholar] [CrossRef]
- Fedorov, P.P.; Koh, A.E.; Kononova, N.G. Barium borate β-BaB2O4 as material for nonlinear optics. Russ. Chem. Rew. 2002, 71, 741–763. [Google Scholar] [CrossRef]
- König, H.; Hoppe, R. Über borate der alkalimetalle. II. Zur Kenntnis von LiB3O5. Z. Annorg. Allg. Chem. 1978, 439, 71–79. [Google Scholar] [CrossRef]
- Ihara, M.; Yuge, M.; Krogh-Moe, J. Crystal structure of lithium triborate Li2O·3B2O3. J. Ceram. Soc. Jpn. 1980, 88, 179. [Google Scholar]
- Hénaff, C.; Hansen, N.K.; Protas, J.; Marnier, G. Electron Density Distribution in LiB3O5 at 293 K. Acta Crystallogr. 1997, B53, 870–879. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Satek, L.C.; McKenna, S.T. Crystal structures of metal aluminium borates. Rigaku J. 1999, 16, 17–30. [Google Scholar]
- Wang, Y.; Wang, L.; Gao, X.; Wang, G.; Li, R.K.; Chen, C.T. Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity. J. Cryst. Growth. 2012, 348, 1–4. [Google Scholar] [CrossRef]
- Hu, Z.-G.; Higashiyama, T.; Yoshimura, M.; Mori, Y.; Sasaki, T. Redetermination of the crystal structure of dipotassium dialuminum borate, K2Al2B2O7, a new non-linear optical material. Z. Kristallogr. 1999, 214, 433–434. [Google Scholar]
- Isaenko, L.I.; Dragomir, A.; McInerney, J.G.; Nikogosyan, D.N. Anisotropy of two-photon absorption in BBO at 264 nm. Opt. Commun. 2001, 198, 433–438. [Google Scholar] [CrossRef]
- Gets, V.A.; Il’ina, O.S.; Isaenko, L.I. Specific features of the flux growth of bulk crystals of high-temperature modification of BaB2O4. Cryst. Rep. 2006, 51, 508–512. [Google Scholar] [CrossRef]
- Ogorodnikov, A.N.; Pustovarov, V.A.; Yakovlev, S.A.; Isaenko, L.I.; Zhurkov, S.A. A time-resolved luminescence spectroscopy study of non-linear optical crystals K2Al2B2O7. J. Lumin. 2012, 132, 1632–1638. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX SHELXL-97. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Kristallogr. 2014, 229, 345–352. [Google Scholar]
- Willis, B.T.M.; Pryor, A.W. Thermal Vibrations in Crystallography; Cambridge University Press: London, UK, 1975. [Google Scholar]
- Momma, K.; Izumi, F. VEST A: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Firsova, V.A.; Filatov, S.K. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glass Phys. Chem. 2013, 39, 347–350. [Google Scholar] [CrossRef]
Formula, Space Group, Z | FBB | Temperatures | References |
---|---|---|---|
Rigid groups | |||
BaBiBO4, Pnma, Z 4 | 1B:1Δ:Δ | [58] | |
β-BaB2O4, R3c, Z 6 | 3B:3Δ:<3Δ> | 98, 123, 173, 223, 295, 323, 693 K | this work |
163, 293 K | [49] | ||
α-BaB2O4, R–3c, Z 6 | 3B:3Δ:<3Δ> | 295, 673 K | this work |
LiB3O5, Pna21, Z 4 | 3B:2Δ1□:∞3<2Δ□> | 98, 123, 148, 173, 198, 223, 248, 273, 298 | this work |
293, 500, 650 K | [47] | ||
CsLiB6O10, I–42d, Z 4 | 3B:2Δ1□:∞3<2Δ□> | 173, 193, 203, 213, 243, 293 K | [55] |
Li2B4O7, I41cd, Z 8 | 4B:2Δ2□:∞3<Δ2□>=<Δ2□> | 293, 473, 673, 773 K | [50] |
123, 148, 173, 198, 223, 248, 298 K | [51] | ||
10–290 K with steps of 10 K | [52] | ||
3.4–300 K | [53] * | ||
293–1203 K with steps of 20 K | [54] * | ||
Non-rigid groups | |||
α-BiB3O6, C21, Z 2 | 8B:4Δ4□:∞2<Δ□Δ□Δ□Δ□> | 100, 140, 160, 180, 240, 295 K | [57] |
K2Al2B2O7 **, P321, Z 3 | 6B:3Δ3□:∞3<Δ□Δ□Δ□> | 98, 123, 173, 223, 298, 348 K | this work |
Compound | System, Space Group | α × 106 K−1 | Δt, °C | Refs | ||||
---|---|---|---|---|---|---|---|---|
α11 | α22 | α33 | αV | αmax − αmin | ||||
Li–borates | ||||||||
Li2B4O7 * | Tetrag., I41cd | 17 | 17 | −13 | 21 | 30 | −189–27 | [51] |
16 | 16 | −4 | 28 | 20 | 20–250 | [50] | ||
16 | 16 | 12 | 44 | 4 | 250–750 | |||
LiCsB6O10 * | Tetrag., I–42d | 20 | 20 | −22 | 18 | 42 | 25–600 | [55] |
Li3B11O18 | Monocl., P21/a | 14 | 38 | −16 | 36 | 54 | 20–180 | [78] |
LiB3O5 * | Orth., Pna21 | 101 | 31 | −71 | 61 | 172 | 25–530 | [47] |
66 | 29 | −63 | 32 | 129 | 25–790 | [79] | ||
108 | 34 | −88 | 54 | 196 | 25–790 | [80] | ||
Na–borates | ||||||||
Na2B4O5(OH)4·3H2O | Trigon., R32 | 14 | 14 | 11 | 39 | 3 | 0–80 | [81] |
γ–Na2B4O7 | Tricl., P–1 | 16 | 12 | 4 | 32 | 12 | 20–550 | [56] |
BaNaSc(BO3)2 | Trigon., R–3 | 8 | 8 | 21 | 38 | 13 | 20–550 | [82] |
α–Na2B4O7 | Tricl., P–1 | 25 | 20 | 9 | 54 | 16 | 20–700 | [83] |
BaNaY(BO3)2 | Trigon., R–3 | 6 | 6 | 26 | 38 | 20 | 25 | [82] |
19 | 19 | 11 | 49 | 8 | 300 | |||
Na3(NO3)B6O10 | Orth., Pnma | 8 | 9 | 39 | 56 | 31 | 20–700 | [26] |
α-Na2B8O13 | Monocl., P21/a | 34 | 11 | 1 | 46 | 33 | 300 | [46] |
β-Na2B8O13 | Monocl., P21/c | 15 | 38 | −1 | 52 | 39 | 20–600 | [26] |
β-NaB3O5 | Monocl., P21/c | 33 | −7 | 6 | 32 | 40 | 20–700 | [83] |
Na2B4O6(OH)2·3H2O | Monocl., P21/c | 43 | 24 | 0 | 67 | 43 | 0–80 | [81] |
(K0.5Na0.5)3B9O15 | Monocl., P21/c | 49 | 5 | 7 | 61 | 44 | 20–700 | [84] |
Na2B4O5(OH)4·8H2O | Monocl., P2/c | 77 | −2 | 19 | 80 | 79 | 4–30 | [81] |
K–borates | ||||||||
K2Al2B2O7 * | Trigon., P32 | 8 | 8 | 17 | 33 | 9 | 30–295 | [85] |
K5B19O31 | Monocl., P2/c | 18 | 3 | 3 | 24 | 15 | 20–700 | [34] |
α-KB5O8 | Orth., Pbca | 12 | 12 | −4 | 20 | 16 | 20–370 | [86] |
12 | 12 | 5 | 29 | 7 | 370–550 | |||
KB3O5 | Monocl., P21/c | 37 | 3 | 6 | 46 | 34 | 20–650 | [87] |
K[B5O6(OH)4]·2H2O * | Orth., Aba2 | 7 | 18 | 44 | 69 | 37 | 20–115 | [88] |
K2NaB9O15 | Monocl., P21/c | 52 | 3 | 0 | 55 | 52 | 20–650 | [84] |
β-KB5O8 | Orth., Pbca | 60 | 20 | −3 | 77 | 63 | 200–700 | [34] |
Rb–borates | ||||||||
Rb2B4O7 | Tricl., P–1 | 20 | 25 | 12 | 57 | 13 | 20–700 | [89] |
Rb5B19O31 | Monocl., P2/c | 27 | 3 | 11 | 41 | 24 | 20–600 | [90] |
α-RbB5O8 | Orth., Pbca | 5 | 10 | −14 | 1 | 24 | 150–300 | [86] |
5 | 10 | 30 | 45 | 25 | 300–500 | |||
Rb3B7O12 | Tricl., P–1 | 54 | 9 | 2 | 65 | 52 | 20–600 | [91] |
β-RbB5O8 | Orth., Pbca | 61 | 23 | 5 | 89 | 56 | 20–720 | [92] |
RbB5O6(OH)4·2H2O * | Orth., Aba2 | 77 | −20 | 21 | 78 | 97 | 20–100 | [88] |
α-RbB3O5 | Orth., P212121 | 29 | −27 | 74 | 76 | 101 | 20–600 | [93] |
β-RbB3O5 | Orth., P212121 | 18 | −11 | 89 | 96 | 100 | 20–700 | [93] |
Rb0.9Cs0.1B3O5 | Orth., P212121 | 24 | −40 | 73 | 57 | 113 | 20–700 | [94] |
Cs–borates | ||||||||
CsB3O5 * | Orth., P212121 | 23 | 11 | 48 | 82 | 37 | 20–800 | [34] |
β-CsB5O8 | Orth., Pbca | 53 | 16 | 14 | 83 | 39 | 20–540 | [95] |
α-CsB5O8 | Monocl. P21/c | 27 | 61 | −8 | 80 | 69 | 20–600 | [48] |
CsB5O6(OH)4·2H2O | Monocl. A2/a | 83 | 18 | 4 | 100 | 79 | 20–95 | [88] |
NH4–borates | ||||||||
(NH4)3[B15O20(OH)8]·4H2O | Monocl. C2/c | 28 | 41 | 18 | 87 | 23 | 10–80 | [96] |
NH4B5O8 | Orth., Pbca | 39 | 6 | 20 | 65 | 33 | 20–330 | [97] |
NH4[B5O7(OH)2]·H2O | Monocl. P21/c | 32 | 53 | −3 | 82 | 56 | 20–90 | [98] |
Ca–borates | ||||||||
CaMg[B3O4(OH)3]2·3H2O | Monocl. P2/c | 16 | 18 | 10 | 44 | 8 | 20–270 | [99] |
Ca[B3O4(OH)3]·H2O | Monocl. P2/a | 29 | 29 | −11 | 47 | 40 | 20–300 | [100] |
Sr–borates | ||||||||
SrB4O7 | Orth., Pmn21 | 7 | 9 | 8 | 24 | 2 | 20–900 | [101] |
Sr2B16O26 | Monocl. P2/c | 21 | 10 | 4 | 35 | 17 | 20–740 | [101] |
γ-Sr2B2O5 | Monocl. P2/c | 20 | 7 | 1 | 28 | 19 | 20–292 | [102] |
SrB2O4 | Orth., Pbcn | 4 | 4 | 33 | 41 | 29 | 20–900 | [101] |
Sr3B2O6 | Trigon., R–3c | 10.5 | 10.5 | 44 | 65 | 33.5 | 20–900 | [101] |
Ba–borates | ||||||||
LiBaB9O15 | Trigon., R–3c | 7 | 7 | −5 | 9 | 12 | 20–700 | [103] |
α-BaB2O4 | Hex., R–3c | 6 | 6 | 28 | 40 | 22 | 20–700 | Here |
BaB4O7 | Monocl., P21/c | 23 | −12 | 5 | 16 | 35 | 20–700 | [104] |
β-BaB2O4 * | Trigon., R3c | 3 | 3 | 45 | 51 | 42 | 20–700 | [104] |
Bi–borates | ||||||||
Bi24B2O39 | Cub., I23 | 17 | 17 | 17 | 51 | 0 | 20–600 | [43] |
Ba3Bi2(BO3)4 | Orth., Pnma | 16 | 11 | 11 | 38 | 5 | 25 | [105] |
30 | 12 | 10 | 52 | 20 | 500 | |||
Ba2Bi3B25O44 | Trigon., R–3m | 12 | 12 | 6 | 30 | 6 | 25 | [106] |
12 | 12 | 0 | 24 | 12 | 700 | |||
Bi3B5O12 | Orth., Pnma | 12 | 12 | 3 | 27 | 9 | 20–700 | [107] |
SrBi2B4O10 | Tricl., P–1 | 13 | 9 | 2 | 24 | 11 | 20–700 | [108] |
Bi4B2O9 | Monocl., P21/c | 20 | 15 | 6 | 41 | 14 | 20–500 | [109] |
BaBiBO4 | Orth., Pnma | 28 | 6 | 10 | 22 | 44 | 25 | [58] |
42 | −3 | 12 | 51 | 45 | 700 | |||
BaBi2B2O7 | Hex., P63 | 6 | 6 | 20 | 32 | 14 | 25 | [110] |
8 | 8 | 34 | 50 | 26 | 625 | |||
BaBi2B4O10 | Monocl., P21/c | 13 | 11 | −3 | 21 | 16 | 20 | [111] |
13 | 11 | 4 | 28 | 9 | 150 | |||
31 | 11 | 9 | 51 | 22 | 600 | |||
Sr0.5Ba0.5Bi2B2O7 | Hex., P63 | 3 | 3 | 22 | 29 | 19 | 25 | [110] |
9 | 9 | 33 | 50 | 24 | 625 | |||
SrBi2B2O7 | Hex., P63 | 4 | 4 | 22 | 30 | 18 | 25 | [110] |
8 | 8 | 30 | 46 | 22 | 625 | |||
α-Bi2B8O15 | Monocl., P21 | 2 | 49 | −8 | 43 | 57 | 20–300 | [112] |
8 | 30 | 2 | 40 | 28 | 300–700 | |||
α-BiB3O6 * | Monocl., C2 | −28 | 54 | 8 | 34 | 82 | −200–300 | [113] |
−25 | 54 | 10 | 39 | 79 | −253–525 | [57] | ||
REE–borates | ||||||||
π-NdBO3 | Hex., P63/mmc | 15 | 15 | 13 | 43 | 2 | 20 | [114] |
14 | 14 | 2 | 30 | 12 | 540 | |||
λ-NdBO3 | Orth. Pnma | 22 | 15 | 17 | 54 | 7 | 20 | [115] |
21 | 3 | 7 | 37 | 18 | 820 | |||
π-LuBO3 | Monocl., C2/c | 9 | 9 | 2 | 20 | 7 | 20 | [114] |
8 | 8 | 1 | 17 | 7 | 540 | |||
β-LuBO3 | Trigon., R–3c | 2 | 2 | 13 | 17 | 11 | 20–600 | [114] |
Mixed borates | ||||||||
LuBa3B9O18 | Hex., P63/m | 3 | 3 | 39 | 39 | 36 | 20–900 | [116] |
Fe3BO6 | Orth. Pnma | 14 | 12 | 2 | 28 | 12 | 20 | [117] |
11 | 9 | 10 | 29 | 2 | 800 | |||
KZnB3O6 | Tricl., P–1 | −1 | 1 | 45 | 45 | 46 | 100–740 | [118] |
Zn4B6O13 | Cub., I–43m | 0.3 | 0.3 | 0.3 | 1 | 0 | −260–−163 | [119] |
1 | 1 | 1 | 3 | 0 | −163–−3 | |||
LiBeBO3 | Tricl., P–1 | −3.3 | 1.8 | 7.6 | 6.1 | 10.9 | −200–−80 | [120] |
GdCa4O(BO3)3 * | Monocl., Cm | 12 ** | 5 ** | 6 ** | 23 ** | 23–300 | [12] | |
YCa4O(BO3)3 * | Monocl., Cm | 13 | 4 | 25 | 43 | 21 | 27 | [121] |
13 | 5 | 30 | 48 | 25 | 100 | |||
La2CaB10O19 * | Monocl., C2 | 9 ** | 8 | 2 ** | 19 ** | 25–300 | [122] | |
Na3La9O3(BO3)8 * | Hex., P–62m | 8 | 8 | 15 | 31 | 7 | 30–500 | [123] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bubnova, R.; Volkov, S.; Albert, B.; Filatov, S. Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations. Crystals 2017, 7, 93. https://doi.org/10.3390/cryst7030093
Bubnova R, Volkov S, Albert B, Filatov S. Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations. Crystals. 2017; 7(3):93. https://doi.org/10.3390/cryst7030093
Chicago/Turabian StyleBubnova, Rimma, Sergey Volkov, Barbara Albert, and Stanislav Filatov. 2017. "Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations" Crystals 7, no. 3: 93. https://doi.org/10.3390/cryst7030093
APA StyleBubnova, R., Volkov, S., Albert, B., & Filatov, S. (2017). Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations. Crystals, 7(3), 93. https://doi.org/10.3390/cryst7030093