Topology and Holonomy in Discrete-time Quantum Walks
Abstract
:1. Introduction
2. Holonomy, Topology and the Berry phase
3. Discrete-Time Quantum Walks
3.1. Split-Step Quantum Walk
3.2. Quantum Walk with Non-Commuting Rotations
4. Zak Phase Calculation
4.1. Split-Step Quantum Walk
4.2. Quantum Walk with Non-Commuting Rotations
4.3. Discussion
5. Experimental Realization
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Berry, M.V. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A 1985, 18, 15. [Google Scholar] [CrossRef]
- Hannay, J. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A 1985, 18, 221. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Delplace, P.; Ullmo, D.; Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 2011, 84, 195452. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef] [PubMed]
- Delacretaz, G.; Grant, E.R.; Whetten, R.L.; Wöste, L.; Zwanziger, J.W. Fractional quantization of molecular pseudorotation in Na 3. Phys. Rev. Lett. 1986, 95, 2598. [Google Scholar] [CrossRef] [PubMed]
- Nadj-Perge, S.; Drozdov, I.K.; Li, J.; Chen, H.; Jeon, S.; Seo, J.; MacDonald, A.H.; Bernevig, B.A.; Yazdani, A. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 2014, 346, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Simon, B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 1983, 51, 2167. [Google Scholar] [CrossRef]
- Kitagawa, T.; Broome, M.A.; Fedrizzi, A.; Rudner, M.S.; Berg, E.; Kassal, I.; Aspuru-Guzik, A.; Demler, E.; White, A.G. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 2012, 3, 882. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, T.; Rudner, M.S.; Berg, E.; Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 2010, 32, 033429. [Google Scholar] [CrossRef]
- Provost, J.; Vallee, G. Riemannian structure on manifolds of quantum states. Comm. Math. Phys. 1980, 86, 289–301. [Google Scholar] [CrossRef]
- Bouchiat, C.; Gibbons, G. Non-integrable quantum phase in the evolution of a spin-1 system: A physical consequence of the non-trivial topology of the quantum state-space. J. Phys. France 1988, 49, 187–199. [Google Scholar] [CrossRef]
- Page, D. Geometrical description of Berry’s phase. Phys. Rev. A 1987, 36, 3479. [Google Scholar] [CrossRef]
- Berry, M.V. Geometric Phases in Physics; Shapere, A., Wilczek, F., Eds.; World Scientific: Singapore, 1989. [Google Scholar]
- Nakahara, M. Geometry, Topology and Physics; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Aharonov, Y.; Davidovich, L.; Zagury, N. Quantum random walks. Phys. Rev. A 1993, 48, 1687. [Google Scholar] [CrossRef] [PubMed]
- Crespi, A.; Osellame, R.; Ramponi, R.; Giovannetti, V.; Fazio, R.; Sansoni, L.; De Nicola, F.; Sciarrino, F.; Mataloni, P. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 2013, 7, 322–328. [Google Scholar] [CrossRef]
- Genske, M.; Alt, W.; Steffen, A.; Werner, A.H.; Werner, R.F.; Meschede, D.; Alberti, A. Electric quantum walks with individual atoms. Phys. Rev. Lett. 2013, 110, 190601. [Google Scholar] [CrossRef] [PubMed]
- Obuse, H.; Kawakami, N. Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 2011, 84, 195139. [Google Scholar] [CrossRef]
- Shikano, Y.; Chisaki, K.; Segawa, E.; Konno, N. Emergence of randomness and arrow of time in quantum walks. Phys. Rev. A 2010, 81, 062129. [Google Scholar] [CrossRef]
- Asbóth, J.K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 2012, 86, 195414. [Google Scholar] [CrossRef]
- Obuse, H.; Asboth, J.K.; Nishimura, Y.; Kawakami, N. Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 2015, 92, 045424. [Google Scholar] [CrossRef]
- Cedzich, C.; Grunbaum, F.; Stahl, C.; Velázquez, L.; Werner, A.; Werner, R. Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 2016, 49, 21LT01. [Google Scholar] [CrossRef]
- Wojcik, A.; Luczak, T.; Kurzynski, P.; Grudka, A.; Gdala, T.; Bednarska-Bzdega, M. Trapping a particle of a quantum walk on the line. Phys. Rev. A 2012, 85, 012329. [Google Scholar] [CrossRef]
- Moulieras, S.; Lewenstein, M.; Puentes, G. Entanglement engineering and topological protection in discrete-time quantum walks. J. Phys. B 2013, 46, 104005. [Google Scholar] [CrossRef]
- Beenakker, C.; Kouwenhoven, L. A road to reality with topological superconductors. Nat. Phys. 2016, 12, 618–621. [Google Scholar] [CrossRef]
- Huber, S.D. Topological mechanics. Nat. Phys. 2016, 12, 621–623. [Google Scholar] [CrossRef]
- Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F. Topological phases of sound and light. Phys. Rev. X 2015, 5, 031011. [Google Scholar] [CrossRef]
- Lu, L.; Joannopoulos, J.; Solijacic, M. Topological states in photonic systems. Nat. Phys. 2016, 12, 626–629. [Google Scholar] [CrossRef]
- Xiao, M.; Ma, G.; Yang, Z.; Sheng, P.; Zhang, Z.Q.; Chan, C.T. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 2015, 11, 240–244. [Google Scholar] [CrossRef]
- Bose, S. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 2003, 91, 207901. [Google Scholar] [CrossRef] [PubMed]
- Christandl, M.; Datta, N.; Ekert, A.; Landahl, A.J. Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 2004, 92, 187902. [Google Scholar] [CrossRef] [PubMed]
- Plenio, M.B.; Huelga, S.F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 2008, 10, 113019. [Google Scholar] [CrossRef]
- Spring, J. Boson sampling on a photonic chip. Science 2013, 339, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G. Photonic boson sampling in a tunable circuit. Science 2013, 339, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, M.; Dakic, B.; Heilmann, R.; Nolte, S.; Szameit, A.; Walther, P. Experimental boson sampling. Nat. Photon. 2013, 7, 540–544. [Google Scholar] [CrossRef]
- Crespi, A. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 2013, 7, 545–549. [Google Scholar] [CrossRef]
- Spagnolo, N. Efficient experimental validation of photonic boson sampling against the uniform distribution. Nat. Photon. 2014, 8, 615–620. [Google Scholar] [CrossRef]
- Carolan, J. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 2014, 8, 621–626. [Google Scholar] [CrossRef]
- Childs, A.M. Universal computation by quantum walk. Phys. Rev. Lett. 2009, 102, 180501. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Puentes, G.; Voigt, D.; Woerdman, J.P. Maximally entangled mixed-state generation via local operations. Phys. Rev. A 2007, 75, 062118. [Google Scholar] [CrossRef]
- Puentes, G.; Voigt, D.; Aiello, A.; Woerdman, J.P. Universality in depolarized light scattering. Opt. Lett. 2006, 30, 3216–3218. [Google Scholar] [CrossRef]
- Peruzzo, A. Quantum walks of correlated photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Poulios, K. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 2014, 332, 143604. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Gabris, A.; Rohde, P.P.; Laiho, K.; Stefanak, M.; Potocek, V.; Hamilton, C.; Jex, I.; Silberhorn, C. A 2D quantum walk simulation of two-particle dynamics. Science 2012, 336, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Schreiber, A.; Cassemiro, K.N.; Potocek, V.; Gábris, A.; Mosley, P.J.; Andersson, E.; Jex, I.; Silberhorn, C. Photons walking the line: A quantum walk with adjustable coin operations. Phys. Rev. Lett. 2010, 104, 050502. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Cassemiro, K.N.; Potocek, V.; Gabris, A.; Jex, I.; Silberhorn, C. Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 2011, 106, 180403. [Google Scholar] [CrossRef] [PubMed]
- Broome, M.A.; Fedrizzi, A.; Lanyon, B.P.; Kassal, I.; Aspuru-Guzik, A.; White, A.G. Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 2010, 104, 153602. [Google Scholar] [CrossRef] [PubMed]
- Zahringer, F.; Kirchmair, G.; Gerritsma, R.; Solano, E.; Blatt, R.; Roos, C.F. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 2010, 104, 100503. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S. Zak phase of photons in optical waveguide lattices. Opt. Lett. 2013, 38, 3716–3719. [Google Scholar] [CrossRef] [PubMed]
- Fruchart, M. Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 2015, 92, 045424. [Google Scholar]
- Rudner, M.S.; Lindner, N.H.; Berg, E.; Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 2013, 3, 031005. [Google Scholar] [CrossRef]
- Atala, M.; Aidelsburger, M.; Barreiro, J.; Abanin, D.; Kitagawa, T.; Demler, E.I. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 2013, 9, 795–800. [Google Scholar] [CrossRef]
- Loredo, J.C.; Broome, M.A.; Smith, D.H.; White, A.G. Observation of entanglement-dependent two-particle holonomic phase. Phys. Rev. Lett. 2014, 112, 143603. [Google Scholar] [CrossRef] [PubMed]
- Brun, T.A.; Carteret, H.A.; Ambainis, A. Quantum to classical transition for random walks. Phys. Rev. Lett. 2003, 91, 130602. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puentes, G. Topology and Holonomy in Discrete-time Quantum Walks. Crystals 2017, 7, 122. https://doi.org/10.3390/cryst7050122
Puentes G. Topology and Holonomy in Discrete-time Quantum Walks. Crystals. 2017; 7(5):122. https://doi.org/10.3390/cryst7050122
Chicago/Turabian StylePuentes, Graciana. 2017. "Topology and Holonomy in Discrete-time Quantum Walks" Crystals 7, no. 5: 122. https://doi.org/10.3390/cryst7050122
APA StylePuentes, G. (2017). Topology and Holonomy in Discrete-time Quantum Walks. Crystals, 7(5), 122. https://doi.org/10.3390/cryst7050122