Extended Defect Propagation in Highly Tensile-Strained Ge Waveguides
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Qi, M.; O’Brien, W.A.; Stephenson, C.A.; Cao, N.; Thibeault, B.J.; Wistey, M.A. Stability of Tensile-Strained Ge Studied by Transmission Electron Microscopy. In Proceedings of the International Silicon-Germanium Technology and Device Meeting (ISTDM), Berkeley, CA, USA, 4–6 June 2012. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Camacho-Aguilera, R.; Kimerling, L.C.; Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 2010, 35, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Lieten, R.R.; Bustillo, K.; Smets, T.; Simoen, E.; Ager, J.W.; Haller, E.E.; Locquet, J.-P. Photoluminescence of bulk germanium. Phys. Rev. B 2012, 86, 035204. [Google Scholar] [CrossRef]
- Yang, H.S.; Malik, R.; Narasimha, S.; Li, Y.; Divakaruni, R.; Agnello, P.; Allen, S.; Antreasyan, A.; Arnold, J.C.; Bandy, K.; et al. Dual Stress Liner for High Performance Sub-45 nm Gate Length SOI CMOS Manufacturing. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 1075–1077. [Google Scholar] [CrossRef]
- Vincent, B.; Gencarelli, F.; Lin, D.; Nyns, L.; Richard, O.; Bender, H.; Douhard, B.; Moussa, A.; Merckling, C.; Witters, L.; et al. Biaxial and Uniaxial Compressive Stress Implemented in Ge(Sn) pMOSFET Channels by Advanced Reduced Pressure Chemical Vapor Deposition Developments. ECS Trans. 2011, 41, 239–248. [Google Scholar] [CrossRef]
- Eneman, G.; Hellings, G.; Mitard, J.; Witters, L.; Yamaguchi, S.; Bardon, M.G.; Christie, P.; Ortolland, C.; Hikavyy, A.; Favia, P.; et al. Si1-xGex-Channel PFETs: Scalability, Layout Considerations and Compatibility with Other Stress Techniques. ECS Trans. 2011, 35, 493–503. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Laux, S.E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 1996, 80, 2234–2252. [Google Scholar] [CrossRef]
- Aldaghri, O.; Ikonic´, Z.; Kelsall, R.W. Optimum strain configurations for carrier injection in near infrared Ge lasers. J. Appl. Phys. 2012, 111, 053106. [Google Scholar] [CrossRef]
- Boztug, C.; Sanchez-Perez, J.R.; Sudradjat, F.F.; Jacobson, R.; Paskiewicz, D.M.; Lagally, M.G.; Paiella, R. Tensilely strained germanium nanomembranes as infrared optical gain media. Small 2013, 9, 622. [Google Scholar] [CrossRef] [PubMed]
- Scopece, D.; Montalenti, F.; Bollani, M.; Chrastina, D.; Bonera, E. Straining Ge bulk and nanomembranes for optoelectronic applications: A systematic numerical analysis. Semicond. Sci. Technol. 2014, 29, 095012. [Google Scholar] [CrossRef]
- Huo, Y.; Lin, H.; Chen, R.; Makarova, M.; Rong, Y.; Li, M.; Kamins, T.I.; Vuckovic, J.; Harris, J.S. Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 011111. [Google Scholar] [CrossRef]
- Bai, Y.; Lee, K.E.; Cheng, C.; Lee, M.L.; Fitzgerald, E.A. Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition. J. Appl. Phys. 2008, 104, 084518. [Google Scholar] [CrossRef]
- Sun, X.; Liu, J.; Kimerling, L.C.; Michel, J. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett. 2009, 34, 1198–1200. [Google Scholar] [CrossRef] [PubMed]
- Kasper, E.; Oehme, M.; Aguirov, T.; Werner, J.; Kittler, M.; Schulze, J. Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes. Adv. Optoelectron. 2012, 2012, 916275. [Google Scholar] [CrossRef]
- Nam, D.; Sukhdeo, D.; Cheng, S.; Roy, A.; Huang, K.C.; Brongersma, M.; Nishi, Y.; Saraswat, K. Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser. Appl. Phys. Lett. 2012, 100, 131112. [Google Scholar] [CrossRef]
- Oehme, M.; Gollhofer, M.; Widmann, D.; Schmid, M.; Kaschel, M.; Kasper, E.; Schulze, J. Direct bandgap narrowing in Ge LED’s on Si substrates. Opt. Express 2013, 21, 2206–2211. [Google Scholar] [CrossRef] [PubMed]
- Süess, M.J.; Geiger, R.; Minamisawa, R.A.; Schiefler, G.; Frigerio, J.; Chrastina, D.; Isella, G.; Spolenak, R.; Faist, J.; Sigg, H. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics 2013, 7, 466–472. [Google Scholar] [CrossRef]
- Oda, K.; Okumura, T.; Kasai, J.; Kako, S.; Iwamoto, S.; Arakawa, Y. Crystallinity improvements of Ge waveguides fabricated by epitaxial lateral overgrowth. Jpn. J. Appl. Phys. 2016, 55, 04EH06. [Google Scholar] [CrossRef]
- Kasper, E.; Oehme, M.; Werner, J.; Aguirov, T.; Kittler, M. Direct band gap luminescence from Ge on Si pin diodes. Front. Optoelectron. 2012, 5, 256–260. [Google Scholar] [CrossRef]
- Kawamura, Y.; Huang, K.C.Y.; Thombare, S.V.; Hu, S.; Gunji, M.; Ishikawa, T.; Brongersma, M.L.; Itoh, K.M.; McIntyre, P.C. Direct-gap photoluminescence from germanium nanowires. Phys. Rev. B 2012, 86, 035306. [Google Scholar] [CrossRef]
- El Kurdi, M.; De Kersauson, M.; David, S.; Checoury, X.; Beaudoin, G.; Jakomin, R.; Sagnes, I.; Sauvage, S.; Fishman, G.; Boucaud, P. Stimulated emission in single tensile-strained Ge photonic wire. In Proceedings of the 8th IEEE Group IV Photonics (GFP) International Conference, London, UK, 14–16 September 2011. [Google Scholar] [CrossRef]
- Jung, D.; Faucher, J.; Mukherjee, S.; Akey, A.; Ironside, D.J.; Cabral, M.; Sang, X.; Lebeau, J.; Bank, S.R.; Buonassisi, T.; et al. Highly tensile-strained Ge/InAlAs nanocomposites. Nat. Commun. 2017, 8, 14204. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Aguilera, R.E.; Cai, Y.; Patel, N.; Bessette, J.T.; Romagnoli, M.; Kimerling, L.C.; Michel, J. An electrically pumped germanium laser. Opt. Express 2012, 20, 11316. [Google Scholar] [CrossRef] [PubMed]
- Koerner, R.; Oehme, M.; Gollhofer, M.; Schmid, M.; Kostecki, K.; Bechler, S.; Widmann, D.; Kasper, E.; Schulze, J. Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt. Express 2015, 23, 14815–14822. [Google Scholar] [CrossRef] [PubMed]
- Frank, W.; Gösele, U. A unifying interpretation of dark line defects in GaAs and bright dislocation halos in GaP. Physica B+C 1983, 116, 420–424. [Google Scholar] [CrossRef]
- Bonard, J.-M.; Ganière, J.-D.; Vanzetti, L.; Paggel, J.J.; Sorba, L.; Franciosi, A.; Hervé, D.; Molva, E. Combined transmission electron microscopy and cathodoluminescence studies of degradation in electron-beam-pumped Zn1-xCdxSe/ZnSe blue-green lasers. J. Appl. Phys. 1998, 84, 1263–1273. [Google Scholar] [CrossRef]
- Capellini, G.; Reich, C.; Guha, S.; Yamamoto, Y.; Lisker, M.; Virgilio, M.; Ghrib, A.; El Kurdi, M.; Boucaud, P.; Tillack, B.; et al. Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. Opt. Express 2014, 22, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Kuroyanagi, R.; Nguyen, L.M.; Tsuchizawa, T.; Ishikawa, Y.; Yamada, K.; Wada, K. Local bandgap control of germanium by silicon nitride stressor. Opt. Express 2013, 21, 18553–18557. [Google Scholar] [CrossRef] [PubMed]
- Takai, M.; Tanigawa, T.; Miyauchi, M.; Nakashima, S.; Gamo, K.; Namba, S. Residual Strain in Single Crystalline Germanium Islands on Insulator. Jpn. J. Appl. Phys. 1984, 23, L363–L365. [Google Scholar] [CrossRef]
- Roundy, D.; Cohen, M.L. Ideal strength of diamond, Si, and Ge. Phys. Rev. B 2001, 64, 212103. [Google Scholar] [CrossRef]
- Macmillan, N.H. The theoretical strength of solids. J. Mater. Sci. 1972, 7, 239–254. [Google Scholar] [CrossRef]
- Ngo, L.T.; Almécija, D.; Sader, J.E.; Daly, B.; Petkov, N.; Holmes, J.D.; Erts, D.; Boland, J.J. Ultimate-Strength Germanium Nanowires. Nano Lett. 2006, 6, 2964–2968. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Holmberg, V.C.; Korgel, B.A. Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric. ACS Nano 2010, 4, 2356–2362. [Google Scholar] [CrossRef] [PubMed]
- Claeys, C. Germanium-Based Technologies: From Materials to Devices; Elsevier Science: Oxford, UK, 2007. [Google Scholar]
- Monemar, B.; Woolhouse, G.R. Observation and analysis of very rapid optical degradation of GaAs/GaAlAs DH laser material. Appl. Phys. Lett. 1976, 29, 605–607. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Egawa, T.; Jimbo, T.; Umeno, M. Influences of Dark Line Defects on Characteristics of AlGaAs/GaAs Quantum Well Lasers Grown on Si Substrates. Jpn. J. Appl. Phys. 1995, 34, 2994–2999. [Google Scholar] [CrossRef]
- Kamejima, T.; Ishida, K.; Matsui, J. Injection-Enhanced Dislocation Glide under Uniaxial Stress in GaAs–(GaAl)As Double Heterostructure Laser. Jpn. J. Appl. Phys. 1977, 16, 233–240. [Google Scholar] [CrossRef]
- Stephenson, C.S.; O’Brien, W.A.; Wistey, M.A. Tensile Ge Waveguide Designs for Compact Silicon Photonics. In preparation.
- Rosenauer, A.; Remmele, T.; Gerthsen, D.; Tillmann, K.; Förster, A. Atomic scale strain measurements by the digital analysis of high-resolution transmission electron microscopic lattice images. Optik 1997, 105, 99. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.; O’Brien, W.A.; Stephenson, C.A.; Patel, V.; Cao, N.; Thibeault, B.J.; Schowalter, M.; Rosenauer, A.; Protasenko, V.; Xing, H.; et al. Extended Defect Propagation in Highly Tensile-Strained Ge Waveguides. Crystals 2017, 7, 157. https://doi.org/10.3390/cryst7060157
Qi M, O’Brien WA, Stephenson CA, Patel V, Cao N, Thibeault BJ, Schowalter M, Rosenauer A, Protasenko V, Xing H, et al. Extended Defect Propagation in Highly Tensile-Strained Ge Waveguides. Crystals. 2017; 7(6):157. https://doi.org/10.3390/cryst7060157
Chicago/Turabian StyleQi, Meng, William A. O’Brien, Chad A. Stephenson, Victor Patel, Ning Cao, Brian J. Thibeault, Marco Schowalter, Andreas Rosenauer, Vladimir Protasenko, Huili (Grace) Xing, and et al. 2017. "Extended Defect Propagation in Highly Tensile-Strained Ge Waveguides" Crystals 7, no. 6: 157. https://doi.org/10.3390/cryst7060157
APA StyleQi, M., O’Brien, W. A., Stephenson, C. A., Patel, V., Cao, N., Thibeault, B. J., Schowalter, M., Rosenauer, A., Protasenko, V., Xing, H., & Wistey, M. A. (2017). Extended Defect Propagation in Highly Tensile-Strained Ge Waveguides. Crystals, 7(6), 157. https://doi.org/10.3390/cryst7060157