Effects of Changing Substituents on the Non-Linear Optical Properties of Two Coumarin Derivatives
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Frontier Molecular Orbitals
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The Antimicrobial agents. Syst. Rev. Pharm. 2017, 8, 62–70. [Google Scholar] [CrossRef]
- Anufrik, S.S.; Tarkovsky, V.V. 3-(2-Benzimidazolyl)coumarin derivatives—Highly effective laser media. J. Appl. Spectrosc. 2010, 77, 640–647. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, J.; Rong, H.; Qian, G.D.; Wang, Z.Y.; Wang, M.Q. Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs. Appl. Phys. B 2007, 86, 309–313. [Google Scholar] [CrossRef]
- Krystkowiak, E.; Dobek, K.; Maciejewski, A. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding. Int. J. Mol. Sci. 2014, 15, 16628–16648. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, J.; Zheng, Z.; Hu, Y.; Jin, J.; Zhang, Q.; Hua, J. A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells. Sci. Rep. 2015, 5, 8592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.-J.; Xia, Y.-Y. Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2008, 194, 167–172. [Google Scholar] [CrossRef]
- Hagberg, D.P.; Marinado, T.; Karlsson, K.M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. J. Org. Chem. 2007, 72, 9550–9556. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, M.; Iwamoto, S.; Arakawa, Y. Enhanced light emission from an organic photonic crystal with a nanocavity. Appl. Phys. Lett. 2005, 87, 151119. [Google Scholar] [CrossRef]
- Tanabe, T.; Notomi, M.; Mitsugi, S.; Shinya, A.; Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 2005, 87, 151112. [Google Scholar] [CrossRef]
- Soljacic, M.; Lidorikis, E.; Joannopoulos, J.D.; Hau, L.V. Ultralow-power all-optical switching. Appl. Phys. Lett. 2005, 86, 171101. [Google Scholar] [CrossRef]
- Nozaki, K.; Tanabe, T.; Shinya, A.; Matsuo, S.; Sato, T.; Taniyama, H.; Notomi, M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 2010, 4, 477–483. [Google Scholar] [CrossRef]
- Briseno, A.L.; Mannsfeld, S.C.B.; Reese, C.; Hancock, J.M.; Xiong, Y.; Jenekhe, S.A.; Bao, Z.; Xia, Y. Perylenediimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters. Nano Lett. 2007, 7, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Jazbinsek, M.; Mutter, L.; Gunter, P. Photonic Applications With the Organic Nonlinear Optical Crystal DAST. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1298–1311. [Google Scholar] [CrossRef]
- Tan, L.; Jiang, W.; Jiang, L.; Jiang, S.; Wang, Z.; Yan, S.; Hu, W. Single crystalline microribbons of perylo[1,12-b,c,d]selenophene for high performance transistors. Appl. Phys. Lett. 2009, 94, 153306. [Google Scholar] [CrossRef]
- Polisseni, C.; Major, K.D.; Boissier, S.; Grandi, S.; Clark, A.S.; Hinds, E.A. Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices. Opt. Express 2016, 24, 5615. [Google Scholar] [CrossRef]
- Zhang, L.; Pavlica, E.; Zhong, X.; Liscio, F.; Li, S.; Bratina, G.; Orgiu, E.; Samorì, P. Fast-Response Photonic Device Based on Organic-Crystal Heterojunctions Assembled into a Vertical-Yet-Open Asymmetric Architecture. Adv. Mater. 2017, 29, 1605760. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.R.; Low, J.N.; Fonseca, A.; Matos, M.J.; Borges, F. Crystal structures of three 6-substituted coumarin-3-carboxamide derivatives. Acta Crystallogr. Sect. E Crystallogr. Commun. 2016, 72, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Fox, Gaussian 09, Revision A.1, (2009); Gaussian Inc.: Wallingford, CT, USA, 2009; Volume 139. [Google Scholar]
- Santos, O.L.; Sabino, J.R.; Georg, H.C.; Fonseca, T.L.; Castro, M.A. Electric properties of the 3-methyl-4-nitropyridine-1-oxyde (POM) molecules in solid phase: A theoretical study including environment polarization effect. Chem. Phys. Lett. 2017, 669, 176–180. [Google Scholar] [CrossRef]
- Santos, O.L.; Fonseca, T.L.; Sabino, J.R.; Georg, H.C.; Castro, M.A. Polarization effects on the electric properties of urea and thiourea molecules in solid phase. J. Chem. Phys. 2015, 143, 234503. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, T.L.; Sabino, J.R.; Castro, M.A.; Georg, H.C. A theoretical investigation of electric properties of l-arginine phosphate monohydrate including environment polarization effects. J. Chem. Phys. 2010, 133, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.F.N.; Almeida, L.R.; dos Santos, F.G.; Carvalho, P.S., Jr.; de Souza, W.C.; Moreira, K.S.; de Aquino, G.L.B.; Valverde, C.; Napolitano, H.B.; Baseia, B. Solid state characterization and theoretical study of non-linear optical properties of a Fluoro-N-Acylhydrazide derivative. PLoS ONE 2017, 12, e0175859. [Google Scholar] [CrossRef] [PubMed]
- Valverde, C.; Rodrigues, R.F.N.; Machado, D.F.S.; Baseia, B.; de Oliveira, H.C.B. Effect of the crystalline environment on the third-order nonlinear optical properties of l-arginine phosphate monohydrate: A theoretical study. J. Mol. Model. 2017, 23, 122. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.R.; Anjos, M.M.; Ribeiro, G.C.; Valverde, C.; Machado, D.F.S.; Oliveira, G.R.; Napolitano, H.B.; de Oliveira, H.C.B. Synthesis, structural characterization and computational study of a novel amino chalcone: A potential nonlinear optical material. New J. Chem. 2017, 41, 1744–1754. [Google Scholar] [CrossRef]
- Vaz, W.F.; Custodio, J.M.F.; Silveira, R.G.; Castro, A.N.; Campos, C.E.M.; Anjos, M.M.; Oliveira, G.R.; Valverde, C.; Baseia, B.; Napolitano, H.B. Synthesis, characterization, and third-order nonlinear optical properties of a new neolignane analogue. RSC Adv. 2016, 6, 79215–79227. [Google Scholar] [CrossRef]
- Ribeiro, G.C.; Almeida, L.R.; Napolitano, H.B.; Valverde, C.; Baseia, B. Polarization effects on the third-order nonlinear optical properties of two polymorphs of enamine derivative. Theor. Chem. Acc. 2016, 135, 244. [Google Scholar] [CrossRef]
- Castro, A.N.; Almeida, L.R.; Anjos, M.M.; Oliveira, G.R.; Napolitano, H.B.; Valverde, C.; Baseia, B. Theoretical study on the third-order nonlinear optical properties and structural characterization of 3-Acetyl-6-Bromocoumarin. Chem. Phys. Lett. 2016, 653, 122–130. [Google Scholar] [CrossRef]
- Guillaume, M.; Champagne, B.; Bégué, D.; Pouchan, C. Electrostatic interaction schemes for evaluating the polarizability of silicon clusters. J. Chem. Phys. 2009, 130, 134715. [Google Scholar] [CrossRef] [PubMed]
- Kanoun, M.B.; Botek, E.; Champagne, B. Electrostatic modeling of the linear optical susceptibilities of 2-methyl-4-nitroaniline, m-nitroaniline, 3-methyl-4-nitropyridine N-oxide and 2-carboxylic acid-4-nitropyridine-1-oxide crystals. Chem. Phys. Lett. 2010, 487, 256–262. [Google Scholar] [CrossRef]
- Seidler, T.; Champagne, B. Which charge definition for describing the crystal polarizing field and the χ (1) and χ (2) of organic crystals? Phys. Chem. Chem. Phys. 2015, 17, 19546–19556. [Google Scholar] [CrossRef] [PubMed]
- Seidler, T.; Krawczuk, A.; Champagne, B.; Stadnicka, K. QTAIM-Based Scheme for Describing the Linear and Nonlinear Optical Susceptibilities of Molecular Crystals Composed of Molecules with Complex Shapes. J. Phys. Chem. C 2016, 120, 4481–4494. [Google Scholar] [CrossRef]
- Seidler, T.; Stadnicka, K.; Champagne, B. Second-order Nonlinear Optical Susceptibilities and Refractive Indices of Organic Crystals from a Multiscale Numerical Simulation Approach. Adv. Opt. Mater. 2014, 2, 1000–1006. [Google Scholar] [CrossRef]
- Seidler, T.; Stadnicka, K.; Champagne, B. Evaluation of the Linear and Second-Order NLO Properties of Molecular Crystals within the Local Field Theory: Electron Correlation Effects, Choice of XC Functional, ZPVA Contributions, and Impact of the Geometry in the Case of 2-Methyl-4-nitroaniline. J. Chem. Theory Comput. 2014, 10, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Seidler, T.; Stadnicka, K.; Champagne, B. Linear and second-order nonlinear optical properties of ionic organic crystals. J. Chem. Phys. 2014, 141, 104109. [Google Scholar] [CrossRef] [PubMed]
- Seidler, T.; Stadnicka, K.; Champagne, B. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory. J. Chem. Phys. 2013, 139, 114105. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, D.A. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev. 1962, 126, 1977–1979. [Google Scholar] [CrossRef]
- Nkungli, N.K.; Ghogomu, J.N. Concomitant Effects of Transition Metal Chelation and Solvent Polarity on the First Molecular Hyperpolarizability of 4-Methoxyacetophenone Thiosemicarbazone: A DFT Study. J. Theor. Chem. 2016, 2016, 1–19. [Google Scholar] [CrossRef]
- Pluta, T.; Sadlej, A.J. Electric properties of urea and thiourea. J. Chem. Phys. 2001, 114, 136. [Google Scholar] [CrossRef]
- Song, X.; Farwell, S.O. Pyrolysis gas chromatography atomic emission detection method for determination of N-containing components of humic and fulvic acids. J. Anal. Appl. Pyrolysis 2004, 71, 901–915. [Google Scholar] [CrossRef]
- Raj, R.K.; Gunasekaran, S.; Gnanasambandan, T.; Seshadri, S. Combined spectroscopic and DFT studies on 6-bromo-4-chloro-3-formyl coumarin, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 139, 505–514. [Google Scholar] [CrossRef] [PubMed]
Isolated Molecule | 〈〉 | |||
Me | −2.65 | −2.37 | −2.32 | 4.25 |
OMe | −0.92 | −2.86 | −1.06 | 3.19 |
Embedded Molecule | 〈〉 | |||
Me | −3.06 | −2.25 | −3.33 | 5.05 |
OMe | −1.24 | −3.52 | −1.18 | 3.92 |
Isolated | 〈〉 | Δ | ||||||
Me | ||||||||
OMe | ||||||||
Embedded | 〈〉 | Δ | ||||||
Me | 62.82 | |||||||
OMe |
Isolated | γyyyy | γzzzz | γxxyy | γyyzz | γxxzz | 〈〉 | |
Me | |||||||
OMe | |||||||
Embedded | γyyyy | γzzzz | γxxyy | γyyzz | γxxzz | 〈〉 | |
Me | |||||||
OMe |
α(−ω;ω) | Me | OMe |
---|---|---|
Acetone | 40.92 | 41.80 |
Chloroform | 41.61 | 42.49 |
Dichloromethane | 41.45 | 42.33 |
DiMethylSulfoxide | 41.41 | 42.29 |
Ethanol | 40.94 | 41.83 |
Gas-Phase | 36.93 | 37.85 |
Methanol | 40.65 | 41.54 |
Water | 40.70 | 41.59 |
Me | OMe | Me | OMe | |
---|---|---|---|---|
Acetone | −3.85 | 0.90 | −1.55 | 2.43 |
Chloroform | −6.19 | −0.83 | −2.99 | 1.08 |
Dichloromethane | −4.83 | 0.26 | −2.15 | 1.91 |
DiMethylSulfoxide | −3.52 | 1.35 | −1.28 | 2.79 |
Ethanol | −3.73 | 1.01 | −1.46 | 2.52 |
Gas-Phase | −1.02 | −5.68 | −5.51 | −2.43 |
Methanol | −3.56 | 1.08 | −1.36 | 2.57 |
Water | −3.30 | 1.29 | −1.18 | 2.76 |
γ(−2ω;ω,ω,0) | γ(−ω;ω,0,0) | |||
---|---|---|---|---|
Me | OMe | Me | OMe | |
Acetone | 233.44 | 224.69 | 166.82 | 162.19 |
Chloroform | 247.44 | 237.56 | 163.20 | 158.71 |
Dichloromethane | 242.84 | 233.33 | 166.97 | 162.27 |
DiMethylSulfoxide | 240.10 | 230.98 | 171.65 | 166.80 |
Ethanol | 233.56 | 224.82 | 167.44 | 162.78 |
Gas-Phase | 187.58 | 182.97 | 112.48 | 111.30 |
Methanol | 229.15 | 220.73 | 166.09 | 161.51 |
Water | 229.41 | 221.01 | 167.41 | 162.79 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baseia, B.; Osório, F.A.P.; Lima, L.F.; Valverde, C. Effects of Changing Substituents on the Non-Linear Optical Properties of Two Coumarin Derivatives. Crystals 2017, 7, 158. https://doi.org/10.3390/cryst7060158
Baseia B, Osório FAP, Lima LF, Valverde C. Effects of Changing Substituents on the Non-Linear Optical Properties of Two Coumarin Derivatives. Crystals. 2017; 7(6):158. https://doi.org/10.3390/cryst7060158
Chicago/Turabian StyleBaseia, Basílio, Francisco A. P. Osório, Larissa Ferreira Lima, and Clodoaldo Valverde. 2017. "Effects of Changing Substituents on the Non-Linear Optical Properties of Two Coumarin Derivatives" Crystals 7, no. 6: 158. https://doi.org/10.3390/cryst7060158
APA StyleBaseia, B., Osório, F. A. P., Lima, L. F., & Valverde, C. (2017). Effects of Changing Substituents on the Non-Linear Optical Properties of Two Coumarin Derivatives. Crystals, 7(6), 158. https://doi.org/10.3390/cryst7060158