Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides
Abstract
:1. Introduction
2. Mechanical Exfoliation Method
3. Physical Vapor Transport/Deposition (PVT/PVD) Method
4. Chemical Vapor Deposition (CVD) Method
5. Molecular Beam Epitaxy (MBE) Method
6. Other Methods
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Rivera, P.; Seyler, K.L.; Yu, H.; Schaibley, J.R.; Yan, J.; Mandrus, D.G.; Yao, W.; Xu, X. Valley-polarized Exciton Dynamics in a 2D Semiconductor Heterostructure. Science 2016, 351, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Vertically Stacked Multi-heterostructures of Layered Materials for Logic Transistors and Complementary Inverters. Nat. Mater. 2013, 12, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly Efficient Gate-tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nanotechnol. 2013, 8, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.A.; Wen, Z.Z.; Wang, L.F.; Tan, P.H.; Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988–5994. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Feng, H.B.; Wu, Y.M.; Jiao, L.Y. Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-X.; Han, N.; Fang, M.; Lin, H.; Cheung, H.-Y.; Yip, S.; Wang, E.-J.; Hung, T.; Wong, C.-Y.; Ho, J.C. Surfactant-assisted Chemical Vapour Deposition of High-performance Small-diameter GaSb Nanowires. Nat. Commun. 2014, 5, 5249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.D.; Zeng, Q.S.; Lv, D.H.; Sun, L.F.; Niu, L.; Fu, W.; Liu, F.C.; Shen, Z.X.; Jin, C.H.; Liu, Z. Controlled Synthesis of High-Quality Mono layered alpha-In2Se3 via Physical Vapor Deposition. Nano Lett. 2015, 15, 6400–6405. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.J.; Lei, S.D.; Ye, G.L.; Li, B.; He, Y.M.; Keyshar, K.; Zhang, X.; Wang, Q.Z.; Lou, J.; Liu, Z.; et al. Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. Nano Lett. 2015, 15, 6135–6141. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, K.; Zubair, A.; Liao, A.D.; Fang, W.J.; Ouyang, F.P.; Lee, Y.H.; Ueno, K.; Saito, R.; Palacios, T.; et al. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Ye, J.; He, X.; Du, K.; Zhang, K.K.; Wang, X.; Xiong, Q.; Liu, Z.; Jiang, H.; Kloc, C. Control of Radiative Exciton Recombination by Charge Transfer Induced Surface Dipoles in MoS2 and WS2 Monolayers. Sci. Rep. 2016, 6, 24105. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, Y.; Aljarb, A.; Shi, Y.; Li, L.-J. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chem. Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Eichfeld, S.; Geschwind, G.; Zhang, K.; Jiang, B.; Mukherjee, D.; Hossain, L.; Piasecki, A.F.; Kabius, B.; Robinson, J.A.; et al. Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides. ACS Nano 2015, 9, 4882–4890. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, Y.; Zhang, Z.; Gong, Y.; Zhou, W.; Hu, Z.; Ye, G.; Zhang, X.; Bianco, E.; Lei, S.; et al. Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. Nano Lett. 2016, 16, 3314–3320. [Google Scholar] [CrossRef] [PubMed]
- Aretouli, K.E.; Tsoutsou, D.; Tsipas, P.; Marquez-Velasco, J.; Aminalragia Giamini, S.; Kelaidis, N.; Psycharis, V.; Dimoulas, A. Epitaxial 2D SnSe2/2D WSe2 van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 23222–23229. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.; Yore, A.E.; Mou, T.; Jha, S.; Smithe, K.K.H.; Wang, B.; Pop, E.; Newaz, A.K.M. Photoresponse of Natural van der Waals Heterostructures. ACS Nano 2017, 11, 6024–6030. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-Y.; Shi, Y.; Cheng, C.-C.; Lu, L.-S.; Lin, Y.-C.; Tang, H.-L.; Tsai, M.-L.; Chu, C.-W.; Wei, K.-H.; He, J.-H.; et al. Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral p-n Junction with an Atomically Sharp Interface. Science 2015, 349, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.I.; et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.; Degregorio, Z.P.; Johns, J.E. Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhang, H. Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and Van der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2016, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron Nitride Substrates for High-quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, W.; Schmidt, J.F.; Zhao, W.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W.; Seletskiy, D.V.; Xiong, Q. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2017, 541, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A.P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S.J.; Geim, A.K.; Tartakovskii, A.I.; et al. Light-emitting Diodes by Band-structure Engineering in Van der Waals Heterostructures. Nat. Mater. 2015, 14, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Withers, F.; Del Pozo-Zamudio, O.; Schwarz, S.; Dufferwiel, S.; Walker, P.M.; Godde, T.; Rooney, A.P.; Gholinia, A.; Woods, C.R.; Blake, P.; et al. WSe2 Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. Nano Lett. 2015, 15, 8223–8228. [Google Scholar] [CrossRef] [PubMed]
- Mashhadi, S.; Duong, D.L.; Burghard, M.; Kern, K. Efficient Photothermoelectric Conversion in Lateral Topological Insulator Heterojunctions. Nano Lett. 2017, 17, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Huo, N.; Kang, J.; Wei, Z.; Li, S.-S.; Li, J.; Wei, S.-H. Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors. Adv. Funct. Mater. 2014, 24, 7025–7031. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors Based on Graphene, other Two-dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Doan, M.-H.; Jin, Y.; Adhikari, S.; Lee, S.; Zhao, J.; Lim, S.C.; Lee, Y.H. Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer. ACS Nano 2017, 11, 3832–3840. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ye, Y.; Han, Y.; Xia, Y.; Zhu, H.; Wang, S.; Wang, Y.; Muller, D.A.; Zhang, X. Large-scale Chemical Assembly of Atomically Thin Transistors and Circuits. Nat. Nanotechnol. 2016, 11, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 2012, 335, 947–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D.-H.; Zhao, P.; Chen, Y.-Z.; Chueh, Y.-L.; Guo, J.; Javey, A. Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors. ACS Nano 2015, 9, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Sup Choi, M.; Lee, G.-H.; Yu, Y.-J.; Lee, D.-Y.; Hwan Lee, S.; Kim, P.; Hone, J.; Jong Yoo, W. Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices. Nat. Commun. 2013, 4, 1624. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; Perez De Lara, D.; Jarillo-Herrero, P.; Gorbachev, R.V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Yoon, S.I.; Kim, G.; Jang, A.R.; Shin, H.S. Stacking of Two-Dimensional Materials in Lateral and Vertical Directions. Chem. Mater. 2014, 26, 4891–4903. [Google Scholar] [CrossRef]
- Bogaert, K.; Liu, S.; Chesin, J.; Titow, D.; Gradečak, S.; Garaj, S. Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures. Nano Lett. 2016, 16, 5129–5134. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Sim, Y.; Le, C.T.; Seong, M.-J.; Jang, J.I.; Rhim, S.H.; Tran Khac, B.C.; Chung, K.-H.; Park, K.; Lee, Y.; et al. Growth and Simultaneous Valley Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure. ACS Nano 2017, 11, 8822–8829. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cook, B.; Gong, M.; Gong, Y.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Printable Transfer-Free and Wafer-Size MoS2/Graphene van der Waals Heterostructures for High-Performance Photodetection. ACS Appl. Mater. Interfaces 2017, 9, 12728–12733. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, G.; Shi, Z.; Liu, C.-C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; et al. Epitaxial Growth of Single-domain Graphene on Hexagonal Boron Nitride. Nat. Mater. 2013, 12, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Lotsch, B.V. Vertical 2D Heterostructures. Annu. Rev. Mater. Res. 2015, 45, 85–109. [Google Scholar] [CrossRef]
- Duan, X.D.; Wang, C.; Pan, A.L.; Yu, R.Q.; Duan, X.F. Two-dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges. Chem. Soc. Rev. 2015, 44, 8859–8876. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, F.C.; Fu, W.; Fang, Z.Y.; Zhou, W.; Liu, Z. Two-dimensional Heterostructures: Fabrication, Characterization, and Application. Nanoscale 2014, 6, 12250–12272. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Hong, X.P.; Kim, J.; Shi, S.F.; Zhang, Y.; Jin, C.H.; Sun, Y.H.; Tongay, S.; Wu, J.Q.; Zhang, Y.F.; Wang, F. Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Rigos, A.F.; Hill, H.M.; Li, Y.L.; Chernikov, A.; Heinz, T.F. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 2015, 15, 5033–5038. [Google Scholar] [CrossRef] [PubMed]
- Nagler, P.; Plechinger, G.; Ballottin, M.V.; Mitioglu, A.; Meier, S.; Paradiso, N.; Strunk, C.; Chernikov, A.; Christianen, P.C.M.; Schüller, C.; et al. Interlayer Exciton Dynamics in a Dichalcogenide Monolayer Heterostructure. 2D Mater. 2017, 4, 025112. [Google Scholar] [CrossRef]
- Ceballos, F.; Bellus, M.Z.; Chiu, H.Y.; Zhao, H. Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure. ACS Nano 2014, 8, 12717–12724. [Google Scholar] [CrossRef] [PubMed]
- Bellus, M.Z.; Ceballos, F.; Chiu, H.Y.; Zhao, H. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures. ACS Nano 2015, 9, 6459–6464. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Tosun, M.; Hettick, M.; Ahn, G.H.; Hu, C.; Javey, A. 2D-2D Tunneling Field-effect Transistors using WSe2/SnSe2 Heterostructures. Appl. Phys. Lett. 2016, 108, 083111. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Zubair, A.; Dresselhaus, M.S.; Palacios, T. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. Nano Lett. 2016, 16, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Furchi, M.M.; Pospischil, A.; Libisch, F.; Burgdorfer, J.; Mueller, T. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Lett. 2014, 14, 4785–4791. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Walker, R.C.; Jovanovic, I.; Robinson, J.A. Effects of Eenergetic Ion Irradiation on WSe2/SiC Heterostructures. Sci. Rep. 2017, 7, 4151. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sanchez, O.; Llado, E.A.; Koman, V.; Morral, A.F.I.; Radenovic, A.; Kis, A. Light Generation and Harvesting in a van der Waals Heterostructure. ACS Nano 2014, 8, 3042–3048. [Google Scholar] [CrossRef] [PubMed]
- Britnell, L.; Ribeiro, R.M.; Eckmann, A.; Jalil, R.; Belle, B.D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R.V.; Georgiou, T.; Morozov, S.V.; et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Li, D.W.; Xiong, W.; Jiang, L.J.; Xiao, Z.Y.; Golgir, H.R.; Wang, M.M.; Huang, X.; Zhou, Y.S.; Lin, Z.; Song, J.F.; et al. Multimodal Nonlinear Optical Imaging of MoS2 and MoS2-Based van der Waals Heterostructures. ACS Nano 2016, 10, 3766–3775. [Google Scholar] [CrossRef] [PubMed]
- Moriya, R.; Yamaguchi, T.; Inoue, Y.; Morikawa, S.; Sata, Y.; Masubuchi, S.; Machida, T. Large Current Modulation in Exfoliated-graphene/MoS2/metal Vertical Heterostructures. Appl. Phys. Lett. 2014, 105, 083119. [Google Scholar] [CrossRef]
- Chen, Z.S.; Biscaras, J.; Shukla, A. Optimal Light Harvesting in 2D Semiconductor Heterostructures. 2D Mater. 2017, 4, 025115. [Google Scholar] [CrossRef]
- Yan, X.; Liu, C.S.; Li, C.; Bao, W.Z.; Ding, S.J.; Zhang, D.W.; Zhou, P. Tunable SnSe2/WSe2 Heterostructure Tunneling Field Effect Transistor. Small 2017, 13, 1701478. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wang, P.; Luo, W.J.; Gong, F.; Liao, L.; Liu, T.D.; Tong, L.; Zang, J.F.; Xu, J.B.; Hu, W.D. Highly Polarization Sensitive Infrared Photodetector Based on Black Phosphorus-on-WSe2 Photogate Vertical Heterostructure. Nano Energy 2017, 37, 53–60. [Google Scholar] [CrossRef]
- Bettis Homan, S.; Sangwan, V.K.; Balla, I.; Bergeron, H.; Weiss, E.A.; Hersam, M.C. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene–MoS2 van der Waals Heterojunction. Nano Lett. 2017, 17, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.P.; Ostwal, V.; Appenzeller, J. Vertical versus Lateral Two-Dimensional Heterostructures: On the Topic of Atomically Abrupt p/n-Junctions. Nano Lett. 2017, 17, 4787–4792. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chow, W.L.; He, X.; Hu, P.; Zheng, S.; Wang, X.; Zhou, J.; Fu, Q.; Fu, W.; Yu, P.; et al. Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure. Adv. Funct. Mater. 2015, 25, 5865–5871. [Google Scholar] [CrossRef]
- Zhang, H.B.; Man, B.Y.; Zhang, Q. Topological Crystalline Insulator SnTe/Si Vertical Heterostructure Photodetectors for High-Performance Near-Infrared Detection. ACS Appl. Mater. Interfaces 2017, 9, 14067–14077. [Google Scholar] [CrossRef] [PubMed]
- Westover, R.D.; Ditto, J.; Falmbigl, M.; Hay, Z.L.; Johnson, D.C. Synthesis and Characterization of Quaternary Monolayer Thick MoSe2/SnSe/NbSe2/SnSe Heterojunction Superlattices. Chem. Mater. 2015, 27, 6411–6417. [Google Scholar] [CrossRef]
- Ai, R.Q.; Guan, X.; Li, J.; Yao, K.K.; Chen, P.; Zhang, Z.W.; Duan, X.D.; Duan, X.F. Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI2/MoS2 (WS2, WSe2) Van der Waals Heterostructures, and Patterned Arrays. ACS Nano 2017, 11, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.L.; Jung, J.H.; Yoon, H.S.; Song, M.S.; Bae, S.H.; Kim, Y.; Chen, Z.G.; Zou, J.; Joyce, H.J.; Gao, Q.; et al. CdS/CdSe Lateral Heterostructure Nanobelts by a Two-Step Physical Vapor Transport Method. Nanotechnology 2010, 21, 145602. [Google Scholar] [CrossRef] [PubMed]
- Behranginia, A.; Yasaei, P.; Majee, A.K.; Sangwan, V.K.; Long, F.; Foss, C.J.; Foroozan, T.; Fuladi, S.; Hantehzadeh, M.R.; Shahbazian-Yassar, R.; et al. Direct Growth of High Mobility and Low-Noise Lateral MoS2–Graphene Heterostructure Electronics. Small 2017, 13, 1604301. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.S.; Qiu, Y.F.; Yang, H.H.; Liu, G.B.; Zheng, W.; Feng, W.; Cao, W.W.; Hu, W.P.; Hu, P.A. In-Plane Mosaic Potential Growth of Large-Area 2D Layered Semiconductors MoS2-MoSe2 Lateral Heterostructures and Photodetector Application. ACS Appl. Mater. Interfaces 2017, 9, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Lin, C.H.; Tseng, Y.W.; Huang, K.H.; Lee, Y.H. Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Lett. 2015, 15, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Shen, J.; Sun, Y.; Cha, J.J. Chemically Synthesized Heterostructures of Two-Dimensional Molybdenum/Tungsten-Based Dichalcogenides with Vertically Aligned Layers. ACS Nano 2014, 8, 9550–9557. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cain, J.D.; Hanson, E.D.; Murthy, A.A.; Hao, S.Q.; Shi, F.Y.; Li, Q.Q.; Wolverton, C.; Chen, X.Q.; Dravid, V.P. Au@MoS2 Core-Shell Heterostructures with Strong Light-Matter Interactions. Nano Lett. 2016, 16, 7696–7702. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Bilgin, I.; Ahmed, T.; Chen, R.J.; Pete, D.; Kar, S.; Zhu, J.X.; Gupta, G.; Mohite, A.; Yoo, J. Charge Transfer in Crystalline Germanium/monolayer MoS2 Heterostructures Prepared by Chemical Vapor Deposition. Nanoscale 2016, 8, 18675–18681. [Google Scholar] [CrossRef] [PubMed]
- Turkdogan, S.; Fan, F.; Ning, C.Z. Color-Temperature Tuning and Control of Trichromatic White Light Emission from a Multisegment ZnCdSSe Heterostructure Nanosheet. Adv. Funct. Mater. 2016, 26, 8521–8526. [Google Scholar] [CrossRef]
- Ago, H.; Fukamachi, S.; Endo, H.; Solis-Fernandez, P.; Yunus, R.M.; Uchida, Y.; Panchal, V.; Kazakova, O.; Tsuji, M. Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides. ACS Nano 2016, 10, 3233–3240. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.X.; Zhang, Q.H.; Weber, B.; Ilatikhameneh, H.; Chen, F.; Sahasrabudhe, H.; Rahman, R.; Li, S.Q.; Chen, Z.; Hellerstedt, J.; et al. Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS2 Heterostructures. ACS Nano 2017, 11, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Karmakar, A.; Shahi, S.; Einarsson, E. Selective and Confined Growth of Transition Metal Dichalcogenides on Transferred Graphene. RSC Adv. 2017, 7, 37310–37314. [Google Scholar] [CrossRef]
- Yue, Y.C.; Feng, Y.Y.; Chen, J.C.; Zhang, D.H.; Feng, W. Two-Dimensional Large-scale Bandgap-tunable Monolayer MoS2(1−x)Se2x/graphene Heterostructures for Phototransistors. J. Mater. Chem. C 2017, 5, 5887–5896. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.Z.; Du, L.J.; Zhang, J.; Shi, J.N.; Chen, W.; Chen, P.; Liao, M.Z.; Zhao, J.; Meng, J.L.; et al. Precisely Aligned Monolayer MoS2 Epitaxially Grown on h-BN basal Plane. Small 2017, 13, 1603005. [Google Scholar] [CrossRef] [PubMed]
- Antonelou, A.; Hoffman, T.; Edgar, J.H.; Yannopoulos, S.N. MoS2/h-BN Heterostructures: Controlling MoS2 Crystal Morphology by Chemical Vapor Deposition. J. Mater. Sci. 2017, 52, 7028–7038. [Google Scholar] [CrossRef]
- Li, Y.T.; Huang, L.; Li, B.; Wang, X.T.; Zhou, Z.Q.; Li, J.B.; Wei, Z.M. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS Nano 2016, 10, 8938–8946. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.H.; Ding, K.; Pan, J.; Shao, Z.B.; Mao, J.; Zhang, X.J.; Jie, J.S. Self-driven, Broadband and Ultrafast Photovoltaic Detectors Based on Topological Crystalline Insulator SnTe/Si Heterostructures. J. Mater. Chem. A 2017, 5, 11171–11178. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Duan, X.; Zang, K.; Luo, J.; Duan, X. Robust Epitaxial Growth of Two-dimensional Heterostructures, Multiheterostructures, and Superlattices. Science 2017, 357, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Nikam, R.D.; Sonawane, P.A.; Sankar, R.; Chen, Y.T. Epitaxial Growth of Vertically Stacked p-MoS2/n-MoS2 Heterostructures by Chemical Vapor Deposition for Light Emitting Devices. Nano Energy 2017, 32, 454–462. [Google Scholar] [CrossRef]
- Samad, L.; Bladow, S.M.; Ding, Q.; Zhuo, J.Q.; Jacobberger, R.M.; Arnold, M.S.; Jin, S. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy. ACS Nano 2016, 10, 7039–7046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Meng, F.; Christianson, J.R.; Arroyo-Torres, C.; Lukowski, M.A.; Liang, D.; Schmidt, J.R.; Jin, S. Vertical Heterostructures of Layered Metal Chalcogenides by van der Waals Epitaxy. Nano Lett. 2014, 14, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.D.; Wang, C.; Shaw, J.C.; Cheng, R.; Chen, Y.; Li, H.L.; Wu, X.P.; Tang, Y.; Zhang, Q.L.; Pan, A.L.; et al. Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, S.; Tang, D.-M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted Atmospheric Pressure Growth of Large WSe2 and WS2 Monolayer Crystals. Appl. Mater. Today 2015, 1, 60–66. [Google Scholar] [CrossRef]
- Barton, A.T.; Yue, R.; Anwar, S.; Zhu, H.; Peng, X.; McDonnell, S.; Lu, N.; Addou, R.; Colombo, L.; Kim, M.J.; et al. Transition Metal Dichalcogenide and Hexagonal Boron Nitride Heterostructures Grown by Molecular Beam Epitaxy. Microelectron. Eng. 2015, 147, 306–309. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar]
- Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D.S.; Liu, K.; Ji, J.; Li, J.B.; et al. Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers. Nano Lett. 2014, 14, 3185–3190. [Google Scholar] [CrossRef] [PubMed]
- Butun, S.; Palacios, E.; Cain, J.D.; Liu, Z.Z.; Dravid, V.P.; Aydin, K. Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS2 Films. ACS Appl. Mater. Interfaces 2017, 9, 15044–15051. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.N.; Zeng, L.L.; Tao, L.L.; Tang, C.Y.; Yuan, H.Y.; Long, H.; Cheng, P.K.; Chai, Y.; Chen, C.S.; Fung, K.H.; et al. Enhanced Photocatalytic Activity of WS2 Film by Laser Drilling to Produce Porous WS2/WO3 Heterostructure. Sci. Rep. 2017, 7, 3125. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.D.; Zheng, Z.Q.; Yang, G.W. Layered-material WS2/topological insulator Bi2Te3 Heterostructure Photodetector with Ultrahigh Responsivity in the Range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840. [Google Scholar] [CrossRef]
- Tan, C.S.; Lu, Y.J.; Chen, C.C.; Liu, P.H.; Gwo, S.; Guo, G.Y.; Chen, L.J. Magnetic MoS2 Interface Monolayer on a CdS Nanowire by Cation Exchange. J. Phys. Chem. C 2016, 120, 23055–23060. [Google Scholar] [CrossRef]
- Lei, Y.; Pakhira, S.; Fujisawa, K.; Wang, X.Y.; Iyiola, O.O.; Lopez, N.P.; Elias, A.L.; Rajukumar, L.P.; Zhou, C.J.; Kabius, B.; et al. Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (WxMo1−xS2) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano 2017, 11, 5103–5112. [Google Scholar] [CrossRef] [PubMed]
Heterostructures | Method | Type | Year | Reference |
---|---|---|---|---|
WS2/MoS2 | CVD | Vertical and Lateral | 2014 | [22] |
WS2/MoS2 | Mechanical exfoliation | Vertical | 2014 | [32] |
WS2/MoS2 | CVD | Vertical and Lateral | 2015 | [23] |
WSe2–MoS2 | CVD | Lateral | 2015 | [21] |
WSe2/MoSe2 | CVD | Vertical and Lateral | 2015 | [11] |
Rubrene/MoS2` | Mechanical exfoliation | Vertical | 2015 | [70] |
MoSe2/SnSe/NbSe2/SnSe | Mechanical and chemical exfoliation | Vertical | 2015 | [72] |
SnSe2/WSe2 | Molecular beam epitaxy | Vertical | 2016 | [19] |
Ge/MoS2 | CVD | Vertical | 2016 | [80] |
SnSe2/WSe2 | Mechanical exfoliation | Vertical | 2016 | [57] |
MoS2/WS2 | CVD | Lateral | 2016 | [44] |
MoSe2/WSe2 | Pulsed-laser-deposition-assisted selenization | Lateral | 2017 | [45] |
WSe2/SiC | Mechanical exfoliation | Vertical | 2017 | [60] |
BP/WSe2 | Mechanical exfoliation | Vertical | 2017 | [67] |
SnSe2/WSe2 | Mechanical exfoliation | Vertical | 2017 | [66] |
Pentacene–MoS2 | PVT | Vertical | 2017 | [68] |
CdI2/MoS2 (WS2, WSe2) | PVT | Vertical | 2017 | [73] |
MoS2/Graphene | CVD | Lateral | 2017 | [75] |
WS2/Graphene | CVD | Vertical | 2017 | [83] |
h-BN/MoS2 | CVD | Vertical | 2017 | [87] |
WS2/WO3 | Laser drilling | Vertical | 2017 | [100] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Wang, L.; Sun, J.; Long, Y.; Hu, P.; Liu, F.; He, X. Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides. Crystals 2018, 8, 35. https://doi.org/10.3390/cryst8010035
Qi H, Wang L, Sun J, Long Y, Hu P, Liu F, He X. Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides. Crystals. 2018; 8(1):35. https://doi.org/10.3390/cryst8010035
Chicago/Turabian StyleQi, Haimei, Lina Wang, Jie Sun, Yi Long, Peng Hu, Fucai Liu, and Xuexia He. 2018. "Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides" Crystals 8, no. 1: 35. https://doi.org/10.3390/cryst8010035
APA StyleQi, H., Wang, L., Sun, J., Long, Y., Hu, P., Liu, F., & He, X. (2018). Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides. Crystals, 8(1), 35. https://doi.org/10.3390/cryst8010035