Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Crystallography
2.2. Magnetic Susceptibility Measurements
2.3. Hirshfeld Surfaces
3. Results and Discussion
Magneto-structural Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and optical switching of Iron(II) complexes. Angew. Chem. Int. Ed. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.S. The development of spin-crossover research. In Spin Crossover Materials: Properties and Applications; John Wiley & Sons Ltd.: Oxford, UK, 2013. [Google Scholar]
- Halcrow, M.A. Structure:function relationships in molecular spin-crossover materials. In Spin-Crossover Materials: Properties and Applications; John Wiley & Sons Ltd.: Oxford, UK, 2013. [Google Scholar]
- Kumar, K.S.; Ruben, M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 2017, 346, 176–205. [Google Scholar] [CrossRef]
- Miyamachi, T.; Gruber, M.; Davesne, V.; Bowen, M.; Boukari, S.; Joly, L.; Scheurer, F.; Rogez, G.; Yamada, T.K.; Ohresser, P.; et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 2012, 3, 938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefter, C.; Davesne, V.; Salmon, L.; Molnár, G.; Demont, P.; Rotaru, A.; Bousseksou, A. Charge transport and electrical properties of spin crossover materials: Towards nanoelectronic and spintronic devices. Magnetochemistry 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Frisenda, R.; Harzmann, G.D.; Celis Gil, J.A.; Thijssen, J.M.; Mayor, M.; van der Zant, H.S.J. Stretching-induced conductance increase in a spin-crossover molecule. Nano Lett. 2016, 16, 4733–4737. [Google Scholar] [CrossRef] [PubMed]
- Harzmann, G.D.; Frisenda, R.; van der Zant, H.S.J.; Mayor, M. Single-molecule spin switch based on voltage-triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 2015, 54, 13425–13430. [Google Scholar] [CrossRef] [PubMed]
- Marchivie, M.; Guionneau, P.; Létard, J.-F.; Chasseau, D. Towards direct correlations between spin-crossover and structural features in Iron(II) complexes. Acta Cryst. B 2003, 59, 479–486. [Google Scholar] [CrossRef]
- Gütlich, P.; Garcia, Y.; Goodwin, H.A. Spin crossover phenomena in Fe(II) complexes. Chem. Soc. Rev. 2000, 29, 419–427. [Google Scholar] [CrossRef]
- Hostettler, M.; Törnroos, K.W.; Chernyshov, D.; Vangdal, B.; Bürgi, H.-B. Challenges in engineering spin crossover: structures and magnetic properties of six alcohol solvates of Iron(II) tris(2-picolylamine) dichloride. Angew. Chem. Int. Ed. 2004, 43, 4589–4594. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O.; Martinez, C.J. Spin-transition polymers: From molecular materials toward memory devices. Science 1998, 279, 44–48. [Google Scholar] [CrossRef]
- Steinert, M.; Schneider, B.; Dechert, S.; Demeshko, S.; Meyer, F. Spin-state versatility in a series of Fe4 [2 × 2] grid complexes: effects of counteranions, lattice solvent, and intramolecular cooperativity. Inorg. Chem. 2016, 55, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Lochenie, C.; Bauer, W.; Railliet, A.P.; Schlamp, S.; Garcia, Y.; Weber, B. Large Thermal hysteresis for Iron(II) spin crossover complexes with N-(Pyrid-4-Yl)Isonicotinamide. Inorg. Chem. 2014, 53, 11563–11572. [Google Scholar] [CrossRef] [PubMed]
- Dankhoff, K.; Lochenie, C.; Puchtler, F.; Weber, B. Solvent influence on the magnetic properties of iron(ii) spin-crossover coordination compounds with 4,4′-dipyridylethyne as linker. Eur. J. Inorg. Chem. 2016, 2016, 2136–2143. [Google Scholar] [CrossRef]
- Harding, D.J.; Phonsri, W.; Harding, P.; Gass, I.A.; Murray, K.S.; Moubaraki, B.; Cashion, J.D.; Liu, L.; Telfer, S.G. Abrupt spin crossover in an Iron(III) quinolylsalicylaldimine complex: Structural Insights and solvent effects. Chem. Commun. 2013, 49, 6340–6342. [Google Scholar] [CrossRef] [PubMed]
- Duriska, M.B.; Neville, S.M.; Moubaraki, B.; Cashion, J.D.; Halder, G.J.; Chapman, K.W.; Balde, C.; Létard, J.-F.; Murray, K.S.; Kepert, C.J.; et al. A nanoscale molecular switch triggered by thermal, light, and guest perturbation. Angew. Chem. Int. Ed. 2009, 48, 2549–2552. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-R.; Shi, H.-Y.; Wei, R.-J.; Li, J.; Zheng, L.-S.; Tao, J. Coligand and solvent effects on the architectures and spin-crossover properties of (4,4)-connected Iron(II) coordination polymers. Inorg. Chem. 2015, 54, 3773–3780. [Google Scholar] [CrossRef] [PubMed]
- Fumanal, M.; Jiménez-Grávalos, F.; Ribas-Arino, J.; Vela, S. Lattice-solvent effects in the spin-crossover of an Fe(II)-based material. The key role of intermolecular interactions between solvent molecules. Inorg. Chem. 2017, 56, 4474–4483. [Google Scholar] [CrossRef] [PubMed]
- Milin, E.; Benaicha, B.; El Hajj, F.; Patinec, V.; Triki, S.; Marchivie, M.; Gómez-García, C.J.; Pillet, S. Magnetic bistability in macrocycle-based FeII spin-crossover complexes: Counter ion and solvent effects. Eur. J. Inorg. Chem. 2016, 2016, 5282. [Google Scholar] [CrossRef]
- Saureu, S.; de Graaf, C. On the role of solvent effects on the electronic transitions in Fe(II) and Ru(II) complexes. Chem. Phys. 2014, 428, 59–66. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Lawson Daku, L.M.; Gosztola, D.; Canton, S.E.; Zhang, X. Probing the impact of solvation on photoexcited spin crossover complexes with high-precision x-ray transient absorption spectroscopy. J. Am. Chem. Soc. 2017, 139, 17518–17524. [Google Scholar] [CrossRef] [PubMed]
- Herold, C.F.; Shylin, S.I.; Rentschler, E. Solvent-dependent SCO behavior of dinuclear Iron(II) complexes with a 1,3,4-thiadiazole bridging ligand. Inorg. Chem. 2016, 55, 6414–6419. [Google Scholar] [CrossRef] [PubMed]
- Phonsri, W.; Harding, P.; Liu, L.; Telfer, S.G.; Murray, K.S.; Moubaraki, B.; Ross, T.M.; Jameson, G.N.L.; Harding, D.J. Solvent modified spin crossover in an Iron(III) complex: phase changes and an exceptionally wide hysteresis. Chem. Sci. 2017, 8, 3949–3959. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.J.C.; Dias, J.C.; Santos, I.C.; Pereira, L.C.J.; da Gama, V.; Waerenborgh, J.C. thermal hysteresis in a spin-crossover FeIII quinolylsalicylaldimine complex, FeIII(5-Br-Qsal)2Ni(Dmit)2·solv: Solvent effects. Inorg. Chem. 2015, 54, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Molnár, G.; Sanchez Costa, J.; Siegler, M.A.; Spek, A.L.; Bousseksou, A.; Fu, W.-T.; Gamez, P.; Reedijk, J. Influence of sample preparation, temperature, light, and pressure on the two-step spin crossover mononuclear compound [Fe(Bapbpy)(NCS)2]. Chem. Mater. 2009, 21, 1123–1136. [Google Scholar] [CrossRef]
- Craig, G.A.; Costa, J.S.; Roubeau, O.; Teat, S.J.; Aromí, G. Local coordination geometry and spin state in novel FeII complexes with 2,6-Bis(Pyrazol-3-Yl)Pyridine-Type ligands as controlled by packing forces: Structural correlations. Chem. Eur. J. 2012, 18, 11703–11715. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.-J.; Tao, J.; Huang, R.-B.; Zheng, L.-S. Reversible and irreversible vapor-induced guest molecule exchange in spin-crossover compounds. Inorg. Chem. 2011, 50, 8553–8564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, F.; Liu, T.; Yuan, M.; Wang, Z.-M.; Gao, S. Spin crossover in a series of Iron(II) complexes of 2-(2-Alkyl-2H-Tetrazol-5-Yl)-1,10-Phenanthroline: Effects of alkyl side chain, solvent, and anion. Inorg. Chem. 2007, 46, 2541–2555. [Google Scholar] [CrossRef] [PubMed]
- Amoore, J.J.M.; Kepert, C.J.; Cashion, J.D.; Moubaraki, B.; Neville, S.M.; Murray, K.S. Structural and magnetic resolution of a two-step full spin-crossover transition in a dinuclear Iron(II) pyridyl-bridged compound. Chem. Eur. J. 2006, 12, 8220–8227. [Google Scholar] [CrossRef] [PubMed]
- Rajadurai, C.; Qu, Z.; Fuhr, O.; Gopalan, B.; Kruk, R.; Ghafari, M.; Ruben, M. Lattice-solvent controlled spin transitions in Iron(II) complexes. Dalton Trans. 2007, 3531–3537. [Google Scholar] [CrossRef] [PubMed]
- Bartel, M.; Absmeier, A.; Jameson, G.N.L.; Werner, F.; Kato, K.; Takata, M.; Boca, R.; Hasegawa, M.; Mereiter, K.; Caneschi, A.; et al. Modification of spin crossover behavior through solvent assisted formation and solvent inclusion in a triply interpenetrating three-dimensional network. Inorg. Chem. 2007, 46, 4220–4229. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-C.; Liu, C.-T.; Sheu, C.-F.; Ho, W.-L.; Lee, G.-H.; Wang, C.-C.; Wang, Y. New Iron(II) spin crossover coordination polymers [Fe(μ-Atrz)3]X2·2H2O (X = ClO4¯, BF4¯) and [Fe(μ-Atrz)(μ-Pyz)(NCS)2]·4H2O with an interesting solvent effect. Inorg. Chem. 2012, 51, 4663–4671. [Google Scholar] [CrossRef] [PubMed]
- Leita, B.A.; Neville, S.M.; Halder, G.J.; Moubaraki, B.; Kepert, C.J.; Létard, J.-F.; Murray, K.S. Anion−solvent dependence of bistability in a family of meridional N-Donor-Ligand-Containing Iron(II) spin crossover complexes. Inorg. Chem. 2007, 46, 8784–8795. [Google Scholar] [CrossRef] [PubMed]
- Halder, G.J.; Kepert, C.J.; Moubaraki, B.; Murray, K.S.; Cashion, J.D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 2002, 298, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Bauer, W.; Pfaffeneder, T.; Dîrtu, M.M.; Naik, A.D.; Rotaru, A.; Garcia, Y. Influence of hydrogen bonding on the hysteresis width in Iron(II) spin-crossover complexes. Eur. J. Inorg. Chem. 2011, 2011, 3193–3206. [Google Scholar] [CrossRef]
- Greenaway, A.M.; Sinn, E. High-spin and low-spin.alpha.-picolylamine Iron(II) complexes. Effect of ligand reversal on spin state. J. Am. Chem. Soc. 1978, 100, 8080–8084. [Google Scholar] [CrossRef]
- Ferguson, A.; Squire, M.A.; Siretanu, D.; Mitcov, D.; Mathonière, C.; Clérac, R.; Kruger, P.E. A face-capped [Fe4L4]8+ spin crossover tetrahedral cage. Chem. Commun. 2013, 49, 1597–1599. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.A.; Fiedler, S.R.; Shores, M.P. Solvent dependent spin-state behaviour via hydrogen bonding in neutral FeII diimine complexes. Aust. J. Chem. 2014, 67, 1595–1600. [Google Scholar] [CrossRef]
- Dîrtu, M.M.; Neuhausen, C.; Naik, A.D.; Rotaru, A.; Spinu, L.; Garcia, Y. Insights into the origin of cooperative effects in the spin transition of [Fe(NH2trz)3](NO3)2: The role of supramolecular interactions evidenced in the crystal structure of [Cu(NH2trz)3](NO3)2·H2O. Inorg. Chem. 2010, 49, 5723–5736. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.S.; Rodríguez-Jiménez, S.; Craig, G.A.; Barth, B.; Beavers, C.M.; Teat, S.J.; Aromí, G. Three-way crystal-to-crystal reversible transformation and controlled spin switching by a nonporous molecular material. J. Am. Chem. Soc. 2014, 136, 3869–3874. [Google Scholar] [CrossRef] [PubMed]
- Gentili, D.; Demitri, N.; Schäfer, B.; Liscio, F.; Bergenti, I.; Ruani, G.; Ruben, M.; Cavallini, M. Multi-modal sensing in spin crossover compounds. J. Mater. Chem. C 2015, 3, 7836–7844. [Google Scholar] [CrossRef]
- Barrios, L.A.; Bartual-Murgui, C.; Peyrecave-Lleixà, E.; Le Guennic, B.; Teat, S.J.; Roubeau, O.; Aromí, G. Homoleptic versus heteroleptic formation of mononuclear Fe(II) complexes with tris-imine ligands. Inorg. Chem. 2016, 55, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Shen, F.; Zhang, M.; Wu, D.; Pan, F.; Sato, O. Room-temperature switching of magnetic hysteresis by reversible single-crystal-to-single-crystal solvent exchange in imidazole-inspired Fe(II) complexes. Dalton Trans. 2016, 45, 14911–14918. [Google Scholar] [CrossRef] [PubMed]
- Galet, A.; Muñoz, M.C.; Real, J.A. Coordination polymers undergoing spin crossover and reversible ligand exchange in the solid. Chem. Commun. 2006, 41, 4321–4323. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sinito, C.; Kaiba, A.; Costa, J.-S.; Desplanches, C.; Dagault, P.; Guionneau, P.; Létard, J.-F.; Negrier, P.; Mondieig, D. Unusual solvent dependence of a molecule-based FeII macrocyclic spin-crossover complex. Eur. J. Inorg. Chem. 2014, 2014, 4927–4933. [Google Scholar] [CrossRef]
- Lennartson, A.; Southon, P.; Sciortino, N.F.; Kepert, C.J.; Frandsen, C.; Mørup, S.; Piligkos, S.; McKenzie, C.J. Reversible guest binding in a non-porous Fe(II) coordination polymer host toggles spin crossover. Chem. Eur. J. 2015, 21, 16066–16072. [Google Scholar] [CrossRef] [PubMed]
- Steinert, M.; Schneider, B.; Dechert, S.; Demeshko, S.; Meyer, F. A Trinuclear Defect-Grid Iron(II) spin crossover complex with a large hysteresis loop that is readily silenced by solvent vapor. Angew. Chem. Int. Ed. 2014, 53, 6135–6139. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Brooker, S. Reversible quantitative guest sensing via spin crossover of an Iron(II) triazole. Chem. Sci. 2016, 7, 2501–2505. [Google Scholar] [CrossRef] [PubMed]
- Archer, R.J.; Hawes, C.S.; Jameson, G.N.L.; McKee, V.; Moubaraki, B.; Chilton, N.F.; Murray, K.S.; Schmitt, W.; Kruger, P.E. Partial spin crossover behaviour in a dinuclear Iron(II) triple helicate. Dalton Trans. 2011, 40, 12368–12373. [Google Scholar] [CrossRef] [PubMed]
- Šalitroš, I.; Pavlik, J.; Boča, R.; Fuhr, O.; Rajadurai, C.; Ruben, M. Supramolecular lattice-solvent control of Iron(II) spin transition parameters. CrystEngComm 2010, 12, 2361–2368. [Google Scholar] [CrossRef]
- Ostermeier, M.; Berlin, M.-A.; Meudtner, R.M.; Demeshko, S.; Meyer, F.; Limberg, C.; Hecht, S. Complexes of click-derived bistriazolylpyridines: Remarkable electronic influence of remote substituents on thermodynamic stability as well as electronic and magnetic properties. Chem. Eur. J. 2010, 16, 10202–10213. [Google Scholar] [CrossRef] [PubMed]
- Pelleteret, D.; Clérac, R.; Mathonière, C.; Harté, E.; Schmitt, W.; Kruger, P.E. Asymmetric spin crossover behaviour and evidence of light-induced excited spin state trapping in a dinuclear Iron(II) helicate. Chem. Commun. 2009, 2, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Y.; Robert, F.; Naik, A.D.; Zhou, G.; Tinant, B.; Robeyns, K.; Michotte, S.; Piraux, L. Spin transition charted in a fluorophore-tagged thermochromic dinuclear Iron(II) complex. J. Am. Chem. Soc. 2011, 133, 15850–15853. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.S.; Ross, T.M.; Moubaraki, B.; Murray, K.S.; Neville, S.M. Spin crossover in polymeric materials using schiff base functionalized triazole ligands. Eur. J. Inorg. Chem. 2013, 2013, 803–812. [Google Scholar] [CrossRef]
- Craze, A.R.; Sciortino, N.F.; Badbhade, M.M.; Kepert, C.J.; Marjo, C.E.; Li, F. Investigation of the spin crossover properties of three dinulear Fe(II) triple helicates by variation of the steric nature of the ligand type. Inorganics 2017, 5, 62. [Google Scholar] [CrossRef]
- Tuna, F.; Lees, M.R.; Clarkson, G.J.; Hannon, M.J. Readily prepared metallo-supramolecular triple helicates designed to exhibit spin-crossover behaviour. Chem. Eur. J. 2004, 10, 5737–5750. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Y.; Grunert, C.M.; Reiman, S.; van Campenhoudt, O.; Gütlich, P. The two-step spin conversion in a supramolecular triple helicate dinuclear Iron(II) complex studied by mössbauer spectroscopy. Eur. J. Inorg. Chem. 2006, 2006, 3333–3339. [Google Scholar] [CrossRef]
- Cowieson, N.P.; Aragao, D.; Clift, M.; Ericsson, D.J.; Gee, C.; Harrop, S.J.; Mudie, N.; Panjikar, S.; Price, J.R.; Riboldi-Tunnicliffe, A.; et al. MX1: A bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron. Rad. 2015, 22, 187–190. [Google Scholar] [CrossRef] [PubMed]
- McPhillips, T.M.; McPhillips, S.E.; Chiu, H.J.; Cohen, A.E.; Deacon, A.M.; Ellis, P.J.; Garman, E.; Gonzalez, A.; Sauter, N.K.; Phizackerley, R.P.; et al. Blu-ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron. Rad. 2002, 9, 401–406. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 1993, 26, 795–800. [Google Scholar] [CrossRef]
- APEX2, version 2014; Bruker AXS Inc.: Madison, WI, USA, 2014. B) SAINT, version 8.34A; Bruker AXS Inc.: Madison, WI, USA, 2014.
- SADABS, version 2014/5; Bruker AXS Inc.: Madison, WI, USA, 2001.
- Sheldrick, G. SHELX-2014: Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Lower Saxony, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta. Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer, Version 3.1; University of Western Australia: Perth, Western Australia, Australia, 2012. [Google Scholar]
- Fatur, S.M.; Shepard, S.G.; Higgins, R.F.; Shores, M.P.; Damrauer, N.H. A synthetically tunable system to control mlct excited-state lifetimes and spin states in Iron(II) polypyridines. J. Am. Chem. Soc. 2017, 139, 4493–4505. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef]
- Archer, R.J.; Scott, H.S.; Polson, M.I.J.; Williamson, B.E.; Mathonière, C.; Rouzières, M.; Clérac, R.; Kruger, P.E. Varied spin crossover behaviour in a family of dinuclear Fe(II) triple helicate complexes. Dalton Trans. 2018, 47, 7965–7974. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Craze, A.R.; Akiyoshi, R.; Tsukiashi, A.; Hayami, S.; Mustonen, O.; Bhadbhade, M.; Bhattacharyya, S.; Marjo, C.E.; Wang, Y.; et al. Direct monitoring of spin transition at a high T1/2 value in a dinuclear triple-stranded helicate Iron(II) complex through x-ray pho-toelectron spectroscopy. Dalton Trans. 2018, 47, 2543–2548. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | ||||
---|---|---|---|---|---|---|
∑ | 100 K Fe01-76.3 | 298 K Fe01-84.8 Fe02-84.9 | 100 K Fe01-59.4 Fe02-90.3 | 155 K Fe01-60.4 Fe02-92.7 | 100 K Fe01-77.2 Fe02-85.2 | 298 K Fe01-87.5 |
Average Fe(II)-N distance (Å) | Fe01-2.13 | Fe01-2.21 Fe02 -2.19 | Fe01-2.00 Fe02-2.18 | Fe01-2.00 Fe02-2.18 | Fe01-2.10 Fe02-2.18 | 2.20 |
Spin state of Fe(II) | MS | HS-HS | LS-HS | LS-HS | HS-MS | HS |
θintermolecular/θintramolecular 100 K | Fe01-15.4/15.3 | Fe01-23.8/20.6 Fe02-18.6/16.4 | Fe01-1.6/21.0 Fe02-6.1/23.9 | Fe01-1.75/23.407 Fe02-6.731/26.834 | Fe01-19.6/11.1 Fe02-14.8/13.1 | 20.6/10.7 |
Space group | C2/c | P | P | P | P | C2/c |
Intermolecular interactions | 6 × N-H…BF4− F3BF…H-CH2C-N No supramolecular network present | 4 × N-H…BF4− No supramolecular network present | 2 × N-H…CH3CN 4 × N-H…BF4− Form side-ways chain | 2 × N-H…CH3CN 4 × N-H…BF4− Form side-ways chain | 6 × N-H…BF4− Form length-wise chain | 6 × N-H…BF4− Form length-wise chain |
Number of intramolecular edge-to-face π interactions | 3 | 2 | 3 | 3 | 2 | 2 |
Number of acetonitrile solvent molecules | 1.5 | 1.25 | 2 | 2 | 2 | 0.75 |
C-X-C angle (where X = CH2, S or O) | 113.6 | 115.4 | 104.9 | 105.1 | 115.8 | 116.2 |
Intrahelical-separation (Å) | 11.72 | 11.72 | 11.78 | 11.77 | 11.62 | 11.72 |
Compound | Spin-State | θintermolecular | Δ θintermolecular | θintramolecular | Δ θintramolecular |
---|---|---|---|---|---|
1 | MS HS | 15.439 23.786 | 8.347 | 15.252 20.61 | 5.418 |
2 | LS HS | 1.57 6.124 | 4.554 | 21.047 23.894 | 2.847 |
3 | MS HS | 19.55 14.75 | 4.8 | 11.05 13.129 | 2.079 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craze, A.R.; Bhadbhade, M.M.; Kepert, C.J.; Lindoy, L.F.; Marjo, C.E.; Li, F. Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds. Crystals 2018, 8, 376. https://doi.org/10.3390/cryst8100376
Craze AR, Bhadbhade MM, Kepert CJ, Lindoy LF, Marjo CE, Li F. Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds. Crystals. 2018; 8(10):376. https://doi.org/10.3390/cryst8100376
Chicago/Turabian StyleCraze, Alexander R., Mohan M. Bhadbhade, Cameron J. Kepert, Leonard F. Lindoy, Christopher E. Marjo, and Feng Li. 2018. "Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds" Crystals 8, no. 10: 376. https://doi.org/10.3390/cryst8100376
APA StyleCraze, A. R., Bhadbhade, M. M., Kepert, C. J., Lindoy, L. F., Marjo, C. E., & Li, F. (2018). Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds. Crystals, 8(10), 376. https://doi.org/10.3390/cryst8100376