A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure
Abstract
:1. Introduction
2. Experiment Section
2.1. Synthesis of Flower-Like TiO2 Nanostructures
2.2. Characterization
2.3. Measurement of Photocatalytic Activity
3. Results and Discussion
3.1. Structures and Morphologies of the TiO2 Samples
3.2. Formation Mechanism of the Flower-Like TiO2
3.3. BET Surface Areas and Pore Size Distributions
3.4. Photocatalytic Activity of Different Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rolison, D.R.; Long, J.W.; Lytle, J.C.; Fischer, A.E.; Rhodes, C.P.; McEvoy, T.M.; Bourg, M.E.; Lubers, A.M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252. [Google Scholar] [CrossRef]
- Weng, Z.; Guo, H.; Liu, X.; Wu, S.; Yeung, K.W.K.; Chu, P.K. Nanostructured TiO2 for energy conversion and storage. Rsc Adv. 2013, 3, 24758–24775. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; And, O.K.V.; Grimes, C.A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Lett. 2006, 6, 215–218. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Wang, R.; Cai, X.; Shen, F. Preparation of TiO2 hollow microspheres by a novel vesicle template method and their enhanced photocatalytic properties. Ceram. Int. 2013, 39, 9465–9470. [Google Scholar] [CrossRef]
- Li, F.B.; Li, X.Z.; Hou, M.F.; Cheah, K.W.; Choy, W.C.H. Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl. Catal. A Gen. 2005, 285, 181–189. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J.C.; Ho, W.; Leung, M.K.P.; Cheng, B.; Zhang, G.; Zhao, X. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania. Appl. Catal. A Gen. 2003, 255, 309–320. [Google Scholar] [CrossRef]
- Yun, J.; Jin, D.; Lee, Y.; Kim, H. Photocatalytic treatment of acidic waste water by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2. Mater. Lett. 2010, 64, 2431–2434. [Google Scholar] [CrossRef]
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Baraton, M.I. Nano-TiO2 for dye-sensitized solar cells. Recent Pat. Nanotechnol. 2012, 6, 10–15. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6781. [Google Scholar] [CrossRef]
- Ho, W.; Yu, J.C.; Lee, S. Synthsis of hierarchical nanoporous F− doped TiO2 spheres with visible light photocatalytic activity. Chem Commun. 2006, 111, 1115–1117. [Google Scholar] [CrossRef]
- Xu, X.; Fang, X.; Zhai, T.; Zeng, H.; Liu, B.; Hu, X.; Bando, Y.; Golberg, D. Tube-in-Tube TiO2 Nanotubes with Porous Walls: Fabrication, Formation Mechanism, and Photocatalytic Properties. Small 2011, 7, 445–449. [Google Scholar] [CrossRef]
- Wu, J.J.; Lu, S.L.; Ge, D.H.; Zhang, L.Z.; Chen, W.; Gu, H.W. Photocatalytic properties of Pd/TiO2 nanosheets for hydrogen evolution from water splitting. RSC Adv. 2016, 6, 67502–67508. [Google Scholar] [CrossRef]
- Kim, C.W.; Choi, M.J.; Lee, S.; Park, H.; Moon, B.; Kang, Y.S.; Kang, Y.S. Crystalline Matrix of Mesoporous TiO2 Framework for Dye-Sensitized Solar Cell Application. J. Phys. Chem. C 2015, 119, 24902–24909. [Google Scholar] [CrossRef]
- Chemseddine, A.; Moritz, T. ChemInform Abstract: Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization. Eur. J. Inorg. Chem. 1999, 30, 235–245. [Google Scholar] [CrossRef]
- Feng, X.; Shankar, K.; Varghese, O.K.; Paulose, M.; Latempa, T.J.; Grimes, C.A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786. [Google Scholar] [CrossRef]
- Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334. [Google Scholar] [CrossRef]
- Feng, J.; Yin, M.; Wang, Z.; Yan, S.; Wan, L.; Li, Z.; Zou, Z. Facile synthesis of anatase TiO2 mesocrystal sheets with dominant {001} facets based on topochemical conversion. CrystEngComm 2010, 12, 3425–3429. [Google Scholar] [CrossRef]
- Wu, X.; Fang, S.; Zheng, Y.; Sun, J.; Lv, K. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity. Molecules 2016, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.G.; Liu, G.; Qiao, S.Z.; Sun, C.H.; Jin, Y.G.; Smith, S.C.; Zou, J.; Cheng, H.M.; Lu, G.Q. Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets. J. Am. Chem. Soc. 2009, 131, 4078–4083. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.S.; Chen, Z.; Forman, A.J.; Kim, D.R.; Rao, P.M.; Jaramillo, T.F.; Zheng, X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Tan, Y.L.; Li, C.M.; Cheah, Y.L.; Luan, D.; Madhavi, S.; Boey, F.Y.; Archer, L.A.; Lou, X.W. Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed {001} Facets for Fast Reversible Lithium Storage. J. Am. Chem. Soc. 2010, 132, 6124–6130. [Google Scholar] [CrossRef]
- Liu, M.; Piao, L.; Lu, W.; Ju, S.; Zhao, L.; Zhou, C.; Li, H.; Wang, W. Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis. Nanoscale 2010, 2, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Chen, W.; Yang, S. Double-Layered Photoanodes from Variable-Size Anatase TiO2 Nanospindles: A Candidate for High-Efficiency Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2010, 49, 3675–3679. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J. Photocatalytic Activity of Hierarchical Flower-Like TiO2 Superstructures with Dominant {001} Facets. Chin. J. Catal. 2011, 32, 525–531. [Google Scholar] [CrossRef]
- Réti, B.; Kiss, G.I.; Gyulavári, T.; Baan, K.; Magyari, K.; Hernadi, K. Carbon sphere templates for TiO2 hollow structures: Preparation, characterization and photocatalytic activity. Catal. Today 2017, 284, 160–168. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Zhu, S.; Liu, Y.; Chen, X. Anatase TiO2 nanotube powder film with high crystallinity for enhanced photocatalytic performance. Nanoscale Res. Lett. 2015, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Yeob, S.J.; Cheng, H.M.; Kang, Y.S. Selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction. Energy Environ. Sci. 2015, 8, 3646–3653. [Google Scholar] [CrossRef]
- Gong, X.Q.; Annabella, S.; Andrea, V. Density functional theory study of formic acid adsorption on anatase TiO2 (001): Geometries, energetics, and effects of coverage, hydration, and reconstruction. J. Phys. Chem. B 2006, 110, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, B.; Li, Y.; Yu, S.; Liu, D.; Wang, P. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Alloys Compd. 2009, 471, 477–480. [Google Scholar] [CrossRef]
- Wei, M.; Zhou, H.; Konishi, Y.; Ichihara, M.; Sugiha, H.; Arakawa, H. Synthesis of tubular titanate via a self-assembly and self-removal process. Inorg. Chem. 2006, 45, 5684–5690. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wang, J.; Chen, R.; Zhou, D.; Xiang, L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals 2016, 6, 148. [Google Scholar] [CrossRef]
- Molla, M.A.I.; Tateishi, I.; Mai, F.; Katsumata, H.; Suzuki, T.; Kaneco, S. Evaluation of Reaction Mechanism for Photocatalytic Degradation of Dye with Self-Sensitized TiO2 under Visible Light Irradiation. Open J. Inorg. Non-Met. Mater. 2017, 7, 1–7. [Google Scholar]
- Hu, C.; Lei, E.; Zhao, D.; Hu, K.; Cui, J.; Xiong, Q.; Liu, Z. Controllable synthesis and formation mechanism of 3D flower-like TiO2 microspheres. J. Mater. Sci. Mater. Electron. 2018, 29, 10277–10283. [Google Scholar] [CrossRef]
- Ma, S.; Xue, J.; Zhou, Y.; Zhang, Z. Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A 2014, 2, 7272–7280. [Google Scholar] [CrossRef]
- Yu, J.G.; Su, Y.R.; Cheng, B. Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania. Adv. Funct. Mater. 2010, 17, 1984–1990. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, L.; Cheng, B.; Su, Y. Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania. J. Phys. Chem. C 2007, 111, 10582–10589. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, L.; Li, T. A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure. Crystals 2018, 8, 466. https://doi.org/10.3390/cryst8120466
Liu H, Zhang L, Li T. A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure. Crystals. 2018; 8(12):466. https://doi.org/10.3390/cryst8120466
Chicago/Turabian StyleLiu, Haixia, Lunan Zhang, and Tianduo Li. 2018. "A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure" Crystals 8, no. 12: 466. https://doi.org/10.3390/cryst8120466
APA StyleLiu, H., Zhang, L., & Li, T. (2018). A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure. Crystals, 8(12), 466. https://doi.org/10.3390/cryst8120466