Atomic-Site-Specific Analysis on Out-of-Plane Elasticity of Convexly Curved Graphene and Its Relationship to
s
p
2
to
s
p
3
Re-Hybridization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Interatomic Forces Obtained at Atomically Specific Sites
3.2. Quantitative Evaluation of Out-of-Plane Elastic Stiffness
4. Discussions
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Lord, E.A.; Mackay, A.L.; Ranganathan, S. New Geometries for New Materials, 1st ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes, 1st ed.; Imperial College Press: London, UK, 1998. [Google Scholar]
- Dresselhauss, M.S.; Terrones, M. Carbon-Based nanomaterials from a historical perspective. Proc. IEEE 2013, 101, 1522–1535. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Piran, T.; Weinberg, S. Statistical Mechanics of Membranes and Surfaces, 2nd ed.; World Scientific Publishing: Singapore, 2004. [Google Scholar]
- Kühnel, W. Differential Geometry, 1st ed.; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Sullivan, J.M. Discrete Differential Geometry, 1st ed.; Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M., Eds.; Oberwolfach Seminars; Springer: Berlin, Germany, 2008; Vol. 38. [Google Scholar]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Klimov, N.N.; Jung, S.; Zhu, S.; Li, T.; Wright, C.A.; Solares, S.D.; Newell, D.B.; Zhitenev, N.B.; Stroscio, J.A. Electromechanical properties of graphene drumheads. Science 2012, 336, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Ortix, C.; Kiravittaya, S.; Schmidt, O.G.; van den Brink, J. Curvature-induced geometric potential in strain-driven nanostructures. Phys. Rev. B 2011, 84, 045438. [Google Scholar] [CrossRef]
- Pacheco Sanjuan, A.A.; Mehboudi, M.; Harriss, E.O.; Terrones, H.; Barraza-Lopez, S. Quantitative chemistry and the discrete geometry of conformal atom-thin crystals. ACS Nano 2014, 8, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nature Materials 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nature Materials 2007, 6, 858–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.-A.; Castro Neto, A.H. Graphene as an electronic membrane. Euro. Phys. Lett. 2008, 84, 57007. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Cortijo, A.; Vozmediano, M.A.H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 2007, 763, 293–308. [Google Scholar] [CrossRef]
- Guinea, F.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S. Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B 2010, 81, 035408. [Google Scholar] [CrossRef] [Green Version]
- San-Jose, P.; González, J.; Guinea, F. Electron-Induced Rippling in Graphene. Phys. Rev. Lett. 2011, 106, 045502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Gazit, D. Correlation between charge inhomogeneities and structure in graphene and other electronic crystalline membranes. Phys. Rev. B 2010, 80, 161406(R). [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Katsnelson, M.I. Enhancement of chemical activity in corrugated graphene. J. Phys. Chem. C 2009, 113, 14176–14178. [Google Scholar] [CrossRef] [Green Version]
- Goler, S.; Coletti, C.; Tozzini, V.; Piazza, V.; Mashoff, T.; Beltram, F.; Pellegrini, V.; Heun, S. Influence of graphene curvature on hydrogen adsorption: Toward hydrogen storage devices. J. Phys. Chem. C 2013, 117, 11506–11513. [Google Scholar] [CrossRef]
- Hickenboth, C.R.; Moore, J.S.; White, S.R.; Sottos, N.R.; Baudry, J.; Wilson, S.R. Biasing reaction pathways with mechanical force. Nature 2007, 446, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Gilman, J.J. Mechanochemistry. Science 1996, 274, 65–66. [Google Scholar] [CrossRef]
- Ashino, M.; Schwarz, A.; Behnke, T.; Wiesendanger, R. Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys. Rev. Lett. 2004, 93, 136101. [Google Scholar] [CrossRef] [PubMed]
- Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Sader, J.E.; Jarvis, S.P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 2004, 84, 1801–1803. [Google Scholar] [CrossRef]
- DeBorde, T.; Joiner, J.C.; Leyden, M.R.; Minot, E.D. Identifying individual single-walled and double-walled carbon nanotubes. Nano Lett. 2008, 8, 3568. [Google Scholar] [CrossRef] [PubMed]
- Ashino, M.; Wiesendanger, R.; Khlobystov, A.N.; Berber, S.; Tománek, D. Revealing subsurface vibrational modes by atom-resolved damping force spectroscopy. Phys. Rev. Lett. 2009, 102, 195503. [Google Scholar] [CrossRef] [PubMed]
- Ashino, M.; Wiesendanger, R. Attractive force-driven superhardening of graphene membranes as a pin-point breaking of continuum mechanics. Sci. Rep. 2017, 7, 46083. [Google Scholar] [CrossRef] [PubMed]
- Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
- Ashino, M.; Obergfel, D.; Haluška, M.; Yang, S.; Khlobystov, A.N.; Roth, S.; Wiesendanger, R. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat. Nanotechnol. 2008, 3, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Colussi, M.L.; Neves, L.P.; Baierle, R.J. Silicon adsorption in single walled nanotubes. Braz. J. Phys. 1991, 36, 886–889. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 6th ed.; John Wiley & Sons Inc.: New York, NY, USA, 1986. [Google Scholar]
- Ashino, M.; Wiesendanger, R. Atomic-Resolution dynamic force microscopy/spectroscopy of individual single-walled carbon nanotube. Jpn. J. Appl. Phys. 2006, 45, 2286–2289. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon 1995, 33, 883–891. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, B.; Wu, J.; Yang, R.; Dunn, M.L. Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 2013, 13, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Lagally, M.G.; Nuzzo, R.G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Paulus, G.L.C.; Wang, Q.H.; Strano, M.S. Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 2013, 46, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Li, W.Z. Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl. Phys. Lett. 2011, 98, 041901. [Google Scholar] [CrossRef]
- Haddon, R.C. Hybridization and the orientation and alignment of .pi.-orbitals in nonplanar conjugated organic molecules: .pi.-orbital axis vector analysis (POAV2). J. Am. Chem. Soc. 1986, 108, 2837–2842. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashino, M.; Wiesendanger, R.
Atomic-Site-Specific Analysis on Out-of-Plane Elasticity of Convexly Curved Graphene and Its Relationship to
Ashino M, Wiesendanger R.
Atomic-Site-Specific Analysis on Out-of-Plane Elasticity of Convexly Curved Graphene and Its Relationship to
Ashino, Makoto, and Roland Wiesendanger.
2018. "Atomic-Site-Specific Analysis on Out-of-Plane Elasticity of Convexly Curved Graphene and Its Relationship to
Ashino, M., & Wiesendanger, R.
(2018). Atomic-Site-Specific Analysis on Out-of-Plane Elasticity of Convexly Curved Graphene and Its Relationship to