Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys
Abstract
:1. Introduction
2. Theory
2.1. The Contrast Factor
2.2. Contrast Factor, Homogeneous Approach
2.2.1. Cubic Alloys
2.2.2. Hexagonal Close Packed Alloys
2.3. Planar Faults
2.4. Contrast Factor, Plasticity Approach
3. Practical Examples
3.1. Cubic Alloys
3.1.1. Homogeneous Approach
3.1.2. Planar Faults
3.1.3. Plasticity Approach
3.2. Hexagonal Close Packed Alloys
3.2.1. Homogeneous Approach
3.2.2. Plasticity Approach
3.2.3. Twinning
4. Conclusions
- (1)
- They add errors to the results obtained by DPPA methods.
- (2)
- They limit the ability of DPPA methods to be used with other characterisation techniques. But,
- (3)
- They can be used to provide additional information about the materials deformation microstructure.
- (4)
- They offer a means to develop and verify models of plastic deformation that incorporate crystal plasticity formulations with work-hardening models that predict changes that occur at the scale of dislocations.
Acknowledgments
Conflicts of Interest
References
- Warren, B.E. X-ray Diffraction; Addison-Wesley Publishing Co.: Reading, UK, 1969. [Google Scholar]
- Kuzel, R. Dislocation line broadening. Zeitschrift Fur Kristallographie 2006, 1, 75–80. [Google Scholar] [CrossRef]
- Simm, T.H. The Use of Diffraction Peak Profile Analysis in Studying the Plastic Deformation of Metals. Ph.D. Thesis, University of Manchester, Manchester, UK, 2012. [Google Scholar]
- Simm, T.H.H.; Withers, P.J.; da Fonseca, J.Q. An evaluation of diffraction peak profile analysis (DPPA) methods to study plastically deformed metals. Mater. Des. 2016, 111, 331–343. [Google Scholar] [CrossRef]
- Van Berkum, J.G.M.; Vermeulen, A.C.; Delhez, R.; de Keijser, T.H.; Mittemeijer, E.J. Applicabilities of the Warren-Averbach analysis and an alternative analysis for separation of size and strain broadening. J. Appl. Crystallogr. 1994, 27, 345–357. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Le Bail, A. Modelling anisotropic crystallite size/microstrain in Rietveld analysis. NIST Spec. Publ. 1992, 846, 142–153. [Google Scholar] [CrossRef]
- Stokes, A.R.; Wilson, A.J.C. The diffraction of X rays by distorted crystal aggregates—I. Proc. Phys. Soc. 1944, 56, 174–181. [Google Scholar] [CrossRef]
- Stephens, P.W. Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Crystallogr. 1999, 32, 281–289. [Google Scholar] [CrossRef]
- Popa, N.C. The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement. J. Appl. Crystallogr. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Krivoglaz, M.A. X-ray and Neutron Diffraction in Nonideal Crystals; Springer-Verlag: Berlin, Germany, 1996. [Google Scholar]
- Simm, T.H. Supplementary data and analysis for “Peak broadening anisotropy and the contrast factor in metal alloys”. OSF 2018. [Google Scholar] [CrossRef]
- Simm, T.H. DPPA BIGdippa and dippaFC. OSF 2018. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, C.; Su, S.; Li, J.; Xing, Y.; Cheng, B. Strain Field Mapping of Dislocations in a Ge/Si Heterostructure. PLoS ONE 2013, 8, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Dupraz, M.; Beutier, G.; Rodney, D.; Mordehai, D.; Verdier, M. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: A numerical study. J. Appl. Crystallogr. 2015, 48, 621–644. [Google Scholar] [CrossRef] [PubMed]
- Borbély, A.; Dragomir-Cernatescu, J.; Ribárik, G.; Ungár, T.; Borbely, A.; Dragomir-Cernatescu, J.; Ribarik, G.; Ungar, T. Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J. Appl. Crystallogr. 2003, 36, 160–162. [Google Scholar] [CrossRef]
- Armstrong, R.W. Crystal Dislocations. Crystals 2016, 6, 9. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Ungár, T.; Borbély, A. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 1996, 69, 3173. [Google Scholar] [CrossRef]
- Scardi, P.; Leoni, M.; Delhez, R. Line broadening analysis using integral breadth methods: A critical review. J. Appl. Crystallogr. 2004, 37, 381–390. [Google Scholar] [CrossRef]
- Wilkens, M. The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solidi 1970, 2, 359–370. [Google Scholar] [CrossRef]
- Ungár, T.; Tichy, G. The Effect of Dislocation Contrast on X-Ray Line Profiles in Untextured Polycrystals. Phys. Status Solidi 1999, 171, 425–434. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray studies of deformed metals. Prog. Met. Phys. 1959, 8, 147–202. [Google Scholar] [CrossRef]
- Ungár, T.; Gubicza, J.; Hanak, P.; Alexandrov, I. Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis. Mater. Sci. Eng. A 2001, 319–321, 274–278. [Google Scholar] [CrossRef]
- Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 1999, 32, 992–1002. [Google Scholar] [CrossRef]
- Abouhilou, F.; Khereddine, A.; Alili, B.; Bradai, D. X-ray peak profile analysis of dislocation type, density and crystallite size distribution in cold deformed Pb-Ca-Sn alloys. Trans. Nonferr. Met. Soc. China 2012, 22, 604–607. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Y.D.; Stoica, A.D.; Horton, D.J.; Tian, H.; Liaw, P.K.; Choo, H.; Richardson, J.W.; Maxey, E. Inter- and intragranular stresses in cyclically-deformed 316 stainless steel. Mater. Sci. Eng. A 2005, 399, 114–119. [Google Scholar] [CrossRef]
- Ungár, T.; Ott, S.; Sanders, P.; Borbély, A.; Weertman, J. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 1998, 46, 3693–3699. [Google Scholar] [CrossRef]
- Ungár, T.; Ribárik, G.; Zilahi, G.; Mulay, R.; Lienert, U.; Balogh, L.; Agnew, S.R. Slip systems and dislocation densities in individual grains of polycrystalline aggregates of plastically deformed CoTi and CoZr alloys. Acta Mater. 2014, 71, 264–282. [Google Scholar] [CrossRef]
- Dragomir, I.C.; Ungár, T. Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Crystallogr. 2002, 35, 556–564. [Google Scholar] [CrossRef]
- Seymour, T.; Frankel, P.; Balogh, L.; Ungár, T.; Thompson, S.P.; Jädernäs, D.; Romero, J.; Hallstadius, L.; Daymond, M.R.; Ribárik, G.; et al. Evolution of dislocation structure in neutron irradiated Zircaloy-2 studied by synchrotron x-ray diffraction peak profile analysis. Acta Mater. 2017, 126, 102–113. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Newsam, J.M.; Deem, M.W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Math. Phys. Sci. 1991, 433, 499–520. [Google Scholar] [CrossRef]
- Estevez-Rams, E.; Penton-Madrigal, A.; Lora-Serrano, R.; Martinez-Garcia, J. Direct determination of microstructural parameters from the x-ray diffraction profile of a crystal with stacking faults. J. Appl. Crystallogr. 2001, 34, 730–736. [Google Scholar] [CrossRef]
- Balogh, L.; Ribarik, G.; Ungár, T. Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. J. Appl. Phys. 2006, 100, 1–10. [Google Scholar] [CrossRef]
- Stokes, A.R.; Wilson, A.J.C.; Bragg, W.L. A method of calculating the integral breadths of Debye-Scherrer lines. Math. Proc. Camb. Philos. Soc. 1942, 38, 313. [Google Scholar] [CrossRef]
- Unga, T.; Gubicza, J.; Riba, G. MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 2001, 34, 669–676. [Google Scholar]
- Scardi, P.; Leoni, M. Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Crystallogr. 1999, 32, 671–682. [Google Scholar] [CrossRef]
- Ungár, T.; Stoica, A.D.; Tichy, G.; Wang, X.L. Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel. Acta Mater. 2014, 66, 251–261. [Google Scholar] [CrossRef]
- Csiszár, G.; Balogh, L.; Misra, A.; Zhang, X.; Ungár, T. The dislocation density and twin-boundary frequency determined by X-ray peak profile analysis in cold rolled magnetron-sputter deposited nanotwinned copper. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef]
- Balogh, L.; Tichy, G.; Ungár, T. Twinning on pyramidal planes in hexagonal close packed crystals determined along with other defects by X-ray line profile analysis. J. Appl. Crystallogr. 2009, 42, 580–591. [Google Scholar] [CrossRef]
- Balogh, L.; Figueiredo, R.B.; Ungár, T.; Langdon, T.G. The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP. Mater. Sci. Eng. A 2010, 528, 533–538. [Google Scholar] [CrossRef]
- Simm, T.H.; Withers, P.J.; da Fonseca, J.Q. Peak broadening anisotropy in deformed face-centred cubic and hexagonal close-packed alloys. J. Appl. Crystallogr. 2014, 47, 1535–1551. [Google Scholar] [CrossRef]
- Borbely, A.; Driver, J.H.; Ungár, T. X-ray method for the determination of stored energies in texture components of deformed metals; application to cold worked ultra high purity iron. Acta Mater. 2000, 48, 2005–2016. [Google Scholar] [CrossRef]
- Guiglionda, G.; Borbely, A.; Driver, J.H. Orientation-dependent stored energies in hot deformed Al-2.5%Mg and their influence on recrystallization. Acta Mater. 2004, 52, 3413–3423. [Google Scholar] [CrossRef]
- Bate, P.S.; da Fonseca, J.Q. Texture development in the cold rolling of IF steel. Mater. Sci. Eng. A 2004, 380, 365–377. [Google Scholar] [CrossRef]
- Sevillano, J.G.; van Houtte, P.; Aernoudt, E. Large strain work hardening and textures. Prog. Mater. Sci. 1980, 25, 69–134. [Google Scholar] [CrossRef]
- Honniball, P.D.; Preuss, M.; Rugg, D.; da Fonseca, J.Q. Grain Breakup During Elevated Temperature Deformation of an HCP Metal. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 2143–2156. [Google Scholar] [CrossRef]
- Da Fonseca, J.Q.; Oliver, E.C.; Bate, P.S.; Withers, P.J. Evolution of intergranular stresses during in situ straining of IF steel with different grain sizes. Mater. Sci. Eng. A 2006, 437, 26–32. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proc. R. Soc. A Math. Phys. Eng. Sci. 1934, 145, 362–387. [Google Scholar] [CrossRef]
- Kurdjumov, G.; Sachs, G. Over the mechanisms of steel hardening. Z. Phys. 1930, 64, 325–343. [Google Scholar]
- Bate, P. Modelling deformation microstructure with the crystal plasticity finite-element method. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1999, 357, 1589–1601. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 1993, 41, 2611–2624. [Google Scholar] [CrossRef]
- Cottrell, A.H. Dislocations and Plastic Flow in Crystals; Clarendon Press: London, UK, 1964. [Google Scholar]
- Cottrell, A.H. Commentary. A brief view of work hardening. Dislocations Solids 2002. [Google Scholar] [CrossRef]
- Bertin, N.; Cai, W. Computation of virtual X-ray diffraction patterns from discrete dislocation structures. Comput. Mater. Sci. 2018, 146, 268–277. [Google Scholar] [CrossRef]
- Bulatov, W.; Cai, V.V. Computer Simulations of Dislocations; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations; Elsevier Science: New York, NY, USA, 2001. [Google Scholar]
- Zehetbauer, M. Cold work hardening in stages IV and V of F.C.C. metals-II. Model fits and physical results. Acta Metall. Mater. 1993, 41, 589–599. [Google Scholar] [CrossRef]
- Keller, C.; Hug, E.; Retoux, R.; Feaugas, X. TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech. Mater. 2010, 42, 44–54. [Google Scholar] [CrossRef]
- Balogh, L.; Gubicza, J.; Hellmig, R.J.; Estrin, Y.; Ungár, T. Thermal stability of the microstructure of severely deformed copper. Zeitschrift Fur Kristallographie 2006, 2, 381–386. [Google Scholar] [CrossRef]
- Gubicza, J.; Nam, N.H.; Balogh, L.; Hellmig, R.J.; Stolyarov, V.V.; Estrin, Y.; Ungár, T. Microstructure of severely deformed metals determined by X-ray peak profile analysis. J. Alloys Compd. 2004, 378, 248–252. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Karaman, I.; Yapici, G.G.; Chumlyakov, Y.I.; Kireeva, I.V. Deformation twinning in difficult-to-work alloys during severe plastic deformation. Mater. Sci. Eng. A 2005, 410–411, 243–247. [Google Scholar] [CrossRef]
- Yapici, G.G.; Karaman, I.; Luo, Z.P. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures. Acta Mater. 2006, 54, 3755–3771. [Google Scholar] [CrossRef]
- Glavicic, M.G.; Salem, A.A.; Semiatin, S.L. X-ray line-broadening analysis of deformation mechanisms during rolling of commercial-purity titanium. Acta Mater. 2004, 52, 647–655. [Google Scholar] [CrossRef]
- Byun, T.S.; Lee, E.H.; Hunn, J.D. Plastic deformation in 316LN stainless steel—Characterization of deformation microstructures. J. Nucl. Mater. 2003, 321, 29–39. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lin, C.-F. Impact properties and microstructure evolution of 304L stainless steel. Mater. Sci. Eng. A 2001, 308, 124–135. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Xiao, W.; Ping, D.; Zhao, X. Twin structure of the lath martensite in low carbon steel. Prog. Nat. Sci. Mater. Int. 2016, 26, 169–172. [Google Scholar] [CrossRef]
- Tian, Y.; Gorbatov, O.I.; Borgenstam, A.; Ruban, A.V.; Hedström, P. Deformation Microstructure and Deformation-Induced Martensite in Austenitic Fe-Cr-Ni Alloys Depending on Stacking Fault Energy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 1–7. [Google Scholar] [CrossRef]
- Hansen, N.; Huang, X.; Pantleon, W.; Winther, G. Grain orientation and dislocation patterns. Philos. Mag. 2006, 86, 3981–3994. [Google Scholar] [CrossRef]
- Dillamore, I.L.; Katoh, H. The Mechanisms of Recrystallization in Cubic Metals with Particular Reference to Their Orientation-Dependence. Met. Sci. 1974, 8, 73–83. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hansen, N. Microstructure and Stength of Nickel at Large Strains. Acta Mater. 2000, 48, 2985–3004. [Google Scholar] [CrossRef]
- Kocks, U.F.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Čížek, J.; Janeček, M.; Krajňák, T.; Stráská, J.; Hruška, P.; Gubicza, J.; Kim, H.S. Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Mater. 2016, 105, 258–272. [Google Scholar] [CrossRef]
- Gubicza, J.; Chinh, N.Q.; Krallics, G.; Schiller, I.; Ungár, T. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation. Curr. Appl. Phys. 2006, 6, 194–199. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Driver, J.H.; Theyssier, M.-C.; Maurice, C.I. Electron backscattered diffraction microtexturestudies on hot deformed aluminium crystals. Mater. Sci. Technol. 1996, 12, 851–858. [Google Scholar] [CrossRef]
- Popova, E.; Staraselski, Y.; Brahme, A.; Mishra, R.K.; Inal, K. Coupled crystal plasticity—Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast. 2015, 66, 85–102. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 2006, 48, 325–359. [Google Scholar] [CrossRef]
- Arafin, M.A.; Szpunar, J.A. A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corros. Sci. 2009, 51, 119–128. [Google Scholar] [CrossRef]
- Das, Y.B.; Simm, T.H.; Gungor, S.; Fitzpatrick, M.E.; Forsey, A.N.; Moat, R.J. An experimental study of plastic deformation and transformation in austenitic stainless steel. Unpubl. Work. (n.d.). 1–35.
- Bachmann, F.; Hielscher, R.; Schaeben, H. Grain detection from 2d and 3d EBSD data—Specification of the MTEX algorithm. Ultramicroscopy 2011, 111, 1720–1733. [Google Scholar] [CrossRef] [PubMed]
- Lütjering, G.; Williams, J. Titanium, 2nd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Honeycombe, R.W.K. The Plastic Deformation of Metals; Edward Arnold: Maidenhead, UK, 1984. [Google Scholar]
- Máthis, K.; Csiszár, G.; Čapek, J.; Gubicza, J.; Clausen, B.; Lukáš, P.; Vinogradov, A.; Agnew, S.R. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results. Int. J. Plast. 2015, 72, 127–150. [Google Scholar] [CrossRef]
- Máthis, K.; Nyilas, K.; Axt, A.; Dragomir-Cernatescu, I.; Ungár, T.; Lukáč, P. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Mater. 2004, 52, 2889–2894. [Google Scholar] [CrossRef]
- Dragomir, I.C.; Li, D.S.; Castello-Branco, G.A.; Garmestani, H.; Snyder, R.L.; Ribarik, G.; Ungár, T. Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction. Mater. Charact. 2005, 55, 66–74. [Google Scholar] [CrossRef]
- Dragomir, I.C.; Castello-Branco, G.A.; Ribarik, G.; Garmestani, H.; Ungár, T.; Snyder, R.L. Burgers vector populations in hot rolled titanium determined by X-ray peak profile analysis. Zeitschrift Fur Kristallographie 2006, 1, 99–104. [Google Scholar] [CrossRef]
- Schafler, E.; Nyilas, K.; Bernstorff, S.; Zeipper, L.; Zehetbauer, M.; Ungár, T. Microstructure of post-deformed ECAP- Ti investigated by Multiple X-Ray Line Profile Analysis. Zeitschrift Fur Kristallographie 2006, 23, 129–134. [Google Scholar] [CrossRef]
- Ungár, T.; Castelnau, O.; Ribarik, G.; Drakopoulos, M.; Bachade, J.L.; Chauveau, T.; Snigirev, A.; Snigireva, I.; Schroer, C.; Bacroix, B. Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis. Acta Mater. 2007, 55, 1117–1127. [Google Scholar] [CrossRef]
- Long, F.; Balogh, L.; Daymond, M.R. Evolution of dislocation density in a hot rolled Zr–2.5Nb alloy with plastic deformation studied by neutron diffraction and transmission electron microscopy. Philos. Mag. 2017, 97, 2888–2914. [Google Scholar] [CrossRef]
- Ungár, T.; Holden, T.M.; Jóni, B.; Clausen, B.; Balogh, L.; Csiszár, G.; Brown, D.W. Dislocation structure in different texture components determined by neutron diffraction line profile analysis in a highly textured Zircaloy-2 rolled plate. J. Appl. Crystallogr. 2015, 48. [Google Scholar] [CrossRef]
- Wilkens, M. Fundamental Aspects of Dislocation Theory; Natl. Bur. Stand. (US)Spec. Publ. No. 317; U.S. Department of Commerce National Bureau of Standards: Washington, DC, USA, 1970.
- Simm, T.H.; Das, Y.; Dunlop, T.; Perkins, K.M.; Birosca, S.; Prakash, L.; da Fonseca, J.Q. In situ and ex situ measurements and modelling of the plastic deformation of HCP alloys measured by neutron diffraction. Unpubl. Work. N/A (2018).
- Timár, G.; da Fonseca, J.Q. Modeling Twin Clustering and Strain Localization in Hexagonal Close-Packed Metals. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 5883–5890. [Google Scholar] [CrossRef]
- Lutjering, G.; Williams, J.C. Commercially Pure (CP) Titanium and Alpha Alloys. Titanium 2007, 175–201. [Google Scholar] [CrossRef]
- Staroselsky, A.; Anand, L. A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B. Int. J. Plast. 2003, 19, 1843–1864. [Google Scholar] [CrossRef]
- Zaefferer, S. A study of active deformation systems in titanium alloys: Dependence on. Mater. Sci. Eng. A 2003, 344, 20–30. [Google Scholar] [CrossRef]
- Evans, C. Micromechanisms and Micromechanics of Zircaloy-4. Ph.D. Thesis, Imperial College London, London, UK, 2014. [Google Scholar]
- Britton, T.B.; Dunne, F.P.E.; Wilkinson, A.J. On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140881. [Google Scholar] [CrossRef]
- Zaefferer, S. Investigation of the Correlation between Texture and Microstrucure on a Submicrometer Scale in the TEM. Adv. Eng. Mater. 2003, 5, 745–752. [Google Scholar] [CrossRef]
- Bridier, F.; Villechaise, P.; Mendez, J. Analysis of the different slip systems activated by tension in a ??/?? titanium alloy in relation with local crystallographic orientation. Acta Mater. 2005, 53, 555–567. [Google Scholar] [CrossRef]
- Battaini, M.; Pereloma, E.V.; Davies, C.H.J. Orientation effect on mechanical properties of commercially pure titanium at room temperature. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2007, 38, 276–285. [Google Scholar] [CrossRef]
- Liu, Q.; Hansen, N. Deformation microstructure and orientation of F.C.C. crystals. Phys. Status Solidi Appl. Res. 1995, 149, 187–199. [Google Scholar] [CrossRef]
- Bozzolo, N.; Chan, L.; Rollett, A.D. Misorientations induced by deformation twinning in titanium. J. Appl. Crystallogr. 2010, 43, 596–602. [Google Scholar] [CrossRef]
- Mullins, S.; Patchett, B.M. Deformation microstructures in titanium sheet metal. Metall. Trans. A 1981, 12, 853–863. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.Z.; He, S.Y.; Wu, W.L. Microstructure developed in the surface layer of Ti-6Al-4V alloy after sliding wear in vacuum. Mater. Charact. 2003, 50, 275–279. [Google Scholar] [CrossRef]
- Wertheim, G.K.; Butler, M.A.; West, K.W.; Buchanan, D.N.E. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974, 45, 1369. [Google Scholar] [CrossRef]
- Guan, D.; Rainforth, W.M.; Ma, L.; Wynne, B.; Gao, J. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017, 126, 132–144. [Google Scholar] [CrossRef]
- Gong, N.; Wu, H.-B.; Yu, Z.-C.; Niu, G.; Zhang, D. Studying Mechanical Properties and Micro Deformation of Ultrafine-Grained Structures in Austenitic Stainless Steel. Metals 2017, 7, 188. [Google Scholar] [CrossRef]
- Lee, E.H.; Byun, T.S.; Hunn, J.D.; Yoo, M.H.; Farrell, K.; Mansur, L.K. On the origin of deformation microstructures in austenitic stainless steel: Part I—Microstructures. Acta Mater. 2001, 49, 3269–3276. [Google Scholar] [CrossRef]
- Balogh, L.; Niezgoda, S.R.; Kanjarla, A.K.; Brown, D.W.; Clausen, B.; Liu, W.; Tomé, C.N. Spatially resolved in situ strain measurements from an interior twinned grain in bulk polycrystalline AZ31 alloy. Acta Mater. 2013, 61, 3612–3620. [Google Scholar] [CrossRef]
Slip System Type | Slip Plane | Burgers Vector | q1 | q2 | |
---|---|---|---|---|---|
1. Basal<a> | (0002) | 0.20227 | −0.101142 | −0.102625 | |
2. Prismatic <a> | 0.35387 | −1.19272 | 0.355623 | ||
3. Prismatic <c> | [0001] | 0.04853 | 3.6161928 | 1.2264112 | |
4. Prismatic <c+a> | 0.10247 | 2.017177 | −0.616631 | ||
5. Pyramidal <a> | 0.3118 | −0.894009 | 0.1833109 | ||
6. Pyramidal2 <c+a> | 0.09227 | 1.299046 | 0.3972469 | ||
7. Pyramidal3 <c+a> | 0.09813 | 1.89412 | −0.365739 | ||
8. Pyramidal4 <c+a> | 0.09323 | 1.5270212 | 0.14615 | ||
9. Screw <a> | multiple | 0.1444 | 0.59492 | −0.710368 | |
10. Screw <c+a> | multiple | 0.41873 | 1.25714 | −0.94015 | |
11. Screw <c> | multiple | [0001] | 3.61 x 10−6 | 165366 | −98611 |
hkl | 111 | 200 | 220 | 311 | 222 | 400 |
---|---|---|---|---|---|---|
ϖhkl | 1 | 1 | ||||
Χhkl |
Constant | Planar Fault Type | 111 | 200 | 220 | 311 | 222 | 400 |
---|---|---|---|---|---|---|---|
ϖhkl | Intrinsic fault | 0.291 | 0.491 | 0.701 | 0.558 | 0.283 | 0.496 |
Twin | 0.195 | 0.342 | 0.465 | 0.217 | 0.195 | 0.341 | |
Extrinsic fault | 0.274 | 0.495 | 0.696 | 0.552 | 0.284 | 0.491 | |
Warren | 0.433 | 1.000 | 0.707 | 0.452 | 0.433 | 1.000 | |
Χhkl | Intrinsic fault | 0.368 | −0.527 | 0.542 | 0.087 | −0.178 | 0.271 |
Twin | 0 | −0.019 | 0 | 0 | 0 | 0.010 | |
Extrinsic fault | −0.354 | 0.530 | −0.532 | −0.085 | 0.177 | −0.265 | |
Warren | 0.250 | −0.500 | 0.250 | −0.091 | −0.125 | 0.250 |
Alloy | Edge | Screw | Mixed | Edge + Planar Faults | Screw + Planar Faults | Mixed + pPlanar Faults |
---|---|---|---|---|---|---|
Steel | 28.3 x 10−5 | 6.8 x 10−5 | 14.1 x 10−5 | 22.1 x 10−5 | 17.8 x 10−5 | 10.3 x 10−5 |
Nickel | 7.1 x 10−5 | 7.7 x 10−5 | 2.9 x 10−5 | 5.8 x 10−5 | 13.6 x 10−5 | 8.7 x 10−5 |
Alloy | Peaks | Warren Broadening (1.5α+β) | Balogh Broadening (1.5α+β) | Warren Intergranular strains (α) | Balogh Intergranular strains (α) |
---|---|---|---|---|---|
Steel | 111/222 | 0.091 | 0.298 | 0.187 | 0.129 |
200/400 | −0.145 | −0.137 | |||
Nickel | 111/222 | −0.058 | −0.191 | −0.059 | −0.040 |
200/400 | −0.008 | −0.007 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simm, T.H. Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys. Crystals 2018, 8, 212. https://doi.org/10.3390/cryst8050212
Simm TH. Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys. Crystals. 2018; 8(5):212. https://doi.org/10.3390/cryst8050212
Chicago/Turabian StyleSimm, Thomas Hadfield. 2018. "Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys" Crystals 8, no. 5: 212. https://doi.org/10.3390/cryst8050212
APA StyleSimm, T. H. (2018). Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys. Crystals, 8(5), 212. https://doi.org/10.3390/cryst8050212