Brief Review of Surface Passivation on III-V Semiconductor
Abstract
:1. Introduction
2. Preparation and Investigation Techniques
2.1. Sulfur Passivation
2.2. Passivation Film Depositing by Atomic Layer Deposition (ALD) Technique
2.3. Plasma Treatment and Nitridation
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tajik, N.; Peng, Z.; Kuyanov, P.; LaPierre, R.R. Sulfur passivation and contact methods for GaAs nanowire solar cells. Nanotechnology 2011, 22, 225402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Gao, X.; Wang, Y.; Xu, L.; Jia, B.; Bai, D.; Bo, B. Facet passivation of GaAs based LDs by plasma pretreatment and RF sputtered AlN film coating. J. Light Wave Technol. 2013, 31, 2279–2283. [Google Scholar]
- Cao, M.; Lin, Z.; Wang, S.; Li, Q.; Xiao, G.; Gao, X.; Liu, H.; Li, H. Property improvement of Al2O3-InP metal oxide semicondcutor capacitors by surface nitridation. Chin. J. Vac. Sci. Technol. 2016, 36, 7. [Google Scholar]
- Robertson, J.; Guo, Y.; Lin, L. Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices. J. Appl. Phys. 2015, 117, 112806. [Google Scholar] [CrossRef]
- Lee, M.-K.; Yen, C.-F. Characteristics of liquid phase deposited SiO2 on (NH4)2S-treated GaAs with an ultrathin Si interface passivation layer. Jpn. J. Appl. Phys. 2014, 53, 056502. [Google Scholar] [CrossRef]
- Ghita, R.V.; Negrila, C.C.; Cotirlan, C.; Logofatu, C. On the passivation of GaAs surface by sulfide compounds. Dig. J. Nanomater. Biostruct. 2013, 8, 1335–1344. [Google Scholar]
- Jiang, S.S.; He, G.; Liang, S.; Zhu, L.; Li, W.D.; Zheng, C.Y.; Lv, J.G.; Liu, M. Modulation of interfacial and electrical properties of HfGdO/GaAs gate stacks by ammonium sulfide passivation and rapid thermal annealing. J. Alloys Compd. 2017, 704, 322–328. [Google Scholar] [CrossRef]
- Mukherjee, C.; Das, T.; Mahata, C.; Maiti, C.K.; Chia, C.K.; Chiam, S.Y.; Chi, D.Z.; Dalapati, G.K. Interface properties of atomic layer deposited TiO2/Al2O3 films on In(0.53)Ga(0.47)As/InP substrates. ACS Appl. Mater. Interfaces 2014, 6, 3263–3274. [Google Scholar] [CrossRef] [PubMed]
- Gougousi, T. Atomic layer deposition of high-k dielectrics on III–V semiconductor surface. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–21. [Google Scholar] [CrossRef]
- Hasegawa, H.; Akazawa, M. Surface passivation technology for III–V semiconductor nanoelectronics. Appl. Surf. Sci. 2008, 255, 628–632. [Google Scholar] [CrossRef]
- Hasegawa, H.; Akazawa, M.; Domanowska, A.; Adamowicz, B. Surface passivation of III–V semiconductors for future CMOS devices—Past research, present status and key issues for future. Appl. Surf. Sci. 2010, 256, 5698–5707. [Google Scholar] [CrossRef]
- Fu, Y.-C.; Peralagu, U.; Millar, D.A.J.; Lin, J.; Povey, I.; Li, X.; Monaghan, S.; Droopad, R.; Hurley, P.K.; Thayne, I.G. The impact of forming gas annealing on the electrical characteristics of sulfur passivated Al2O3/In0.53Ga0.47As (110)metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 2017, 110, 142905. [Google Scholar] [CrossRef]
- Zhernokletov, D.M.; Dong, H.; Brennan, B.; Kim, J.; Wallace, R.M. Optimization of the ammonium sulfide (NH4)2S passivation process on InSb(111)A. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2012, 30, 04E103. [Google Scholar] [CrossRef]
- Lebedev, M.V.; Kunitsyna, E.V.; Calvet, W.; Mayer, T.; Jaegermann, W. Sulfur Passivation of GaSb(100) Surfaces: Comparison of Aqueous and Alcoholic Sulfide Solutions Using Synchrotron Radiation Photoemission Spectroscopy. J. Phys. Chem. C 2013, 117, 15996–16004. [Google Scholar] [CrossRef]
- Lim, H.; Carraro, C.; Maboudian, R.; Pruessner, M.W.; Ghodssi, R. Chemical and Thermal Stability of Alkanethiol and Sulfur Passivated InP(100). Langmuir 2004, 20, 743–747. [Google Scholar] [CrossRef] [PubMed]
- McGuiness, C.L.; Shaporenko, A.; Mars, C.K.; Uppili, S.; Zharnikov, M.; Allara, D.L. Molecular self-assembly at bare semiconductor surfaces: Preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001). J. Am. Chem. Soc. 2006, 128, 5231–5243. [Google Scholar] [CrossRef] [PubMed]
- Budz, H.A.; Biesinger, M.C.; LaPierre, R.R. Passivation of GaAs by octadecanethiol self-assembled monolayers deposited from liquid and vapor phases. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 637. [Google Scholar] [CrossRef]
- Ding, X.; Moumanis, K.; Dubowski, J.J.; Tay, L.; Rowell, N.L. Fourier-transform infrared and photoluminescence spectroscopies of self-assembled monolayers of long-chain thiols on (001) GaAs. J. Appl. Phys. 2006, 99, 054701. [Google Scholar] [CrossRef]
- Ye, S.; Li, G.; Noda, H.; Uosaki, K.; Osawa, M. Characterization of self-assembled monolayers of alkanethiol on GaAs surface by contact angle and angle-resolved XPS measurements. Surf. Sci. 2003, 529, 163–170. [Google Scholar] [CrossRef]
- Cuypers, D.; Fleischmann, C.; van Dorp, D.H.; Brizzi, S.; Tallarida, M.; Müller, M.; Hönicke, P.; Billen, A.; Chintala, R.; Conard, T.; et al. Sacrificial Self-Assembled Monolayers for the Passivation of GaAs (100) Surfaces and Interfaces. Chem. Mater. 2016, 28, 5689–5701. [Google Scholar] [CrossRef]
- Mancheno-Posso, P.; Muscat, A.J. Self-assembly of alkanethiolates directs sulfur bonding with GaAs(100). Appl. Surf. Sci. 2017, 397, 1–12. [Google Scholar] [CrossRef]
- Preda, L.; Anastasescu, M.; Dobrescu, G.; Negrila, C.; Lazarescu, V. Role of the dithiolate backbone on the passivation of p-GaAs(111)B surface. J. Electroanal. Chem. 2016, 771, 56–63. [Google Scholar] [CrossRef]
- Ponath, P.; Posadas, A.B.; Demkov, A.A. Ge(001) surface cleaning methods for device integration. Appl. Phys. Rev. 2017, 4, 021308. [Google Scholar] [CrossRef]
- Milojevic, M.; Aguirre-Tostado, F.S.; Hinkle, C.L.; Kim, H.C.; Vogel, E.M.; Kim, J.; Wallace, R.M. Half-cycle atomic layer deposition reaction studies of Al2O3 on In0.2Ga0.8As (100) surfaces. Appl. Phys. Lett. 2008, 93, 202902. [Google Scholar] [CrossRef]
- Luo, X.; Rahbarihagh, Y.; Hwang, J.C.M.; Liu, H.; Du, Y.; Ye, P.D. Temporal and Thermal Stability of Al2O3-Passivated Phosphorene MOSFETs. IEEE Electron Device Lett. 2014, 35, 1314–1316. [Google Scholar] [CrossRef]
- Xuan, M.Y.; Lin, Hu.; Ye, P.D. Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High-κ Dielectrics. IEEE Trans. Electron Devices 2007, 54, 1811–1817. [Google Scholar] [CrossRef]
- Yen, C.-F.; Lee, M.-K.; Lee, J.-C. Electrical characteristics of Al2O3/TiO2/Al2O3 prepared by atomic layer deposition on (NH4)2S-treated GaAs. Solid-State Electron. 2014, 92, 1–4. [Google Scholar] [CrossRef]
- Hsueh, W.-J.; Chen, C.-Y.; Chang, C.-M.; Chyi, J.-I.; Huang, M.-L. Effects of GaSb surface preparation on the characteristics of HfO2/Al2O3/GaSb metal-oxide-semiconductor capacitors prepared by atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 2017, 35, 01B106. [Google Scholar] [CrossRef]
- Huang, M.L.; Chang, Y.C.; Chang, C.H.; Lee, Y.J.; Chang, P.; Kwo, J.; Wu, T.B.; Hong, M. Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3. Appl. Phys. Lett. 2005, 87, 252104. [Google Scholar] [CrossRef]
- Kent, T.J.; Edmonds, M.; Chagarov, E.; Droopad, R.; Kummel, A.C. Dual passivation of GaAs (110) surfaces using O2/H2O and trimethylaluminum. J. Chem. Phys. 2013, 139, 244706. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Gao, J.; Chen, H.; Cui, J.; Sun, Z.; Chen, X. Modulating the Interface Quality and Electrical Properties of HfTiO/InGaAs Gate Stack by Atomic-Layer-Deposition-Derived Al2O3 Passivation Layer. ACS Appl. Mater. Interfaces 2014, 6, 22013–22025. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, C.L.; Milojevic, M.; Vogel, E.M.; Wallace, R.M. Surface passivation and implications on high mobility channel performance (Invited Paper). Microelectron. Eng. 2009, 86, 1544–1549. [Google Scholar] [CrossRef]
- Kundu, S.; Shripathi, T.; Banerji, P. Interface engineering with an MOCVD grown ZnO interface passivation layer for ZrO2–GaAs metal–oxide–semiconductor devices. Solid State Commun. 2011, 151, 1881–1884. [Google Scholar] [CrossRef]
- Byun, Y.C.; Choi, S.; An, Y.; McIntyre, P.C.; Kim, H. Tailoring the interface quality between HfO2 and GaAs via in situ ZnO passivation using atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 10482–10488. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.-M.; Zhang, Y.-M.; Lü, H.-L. Interfacial characteristics of Al/Al2O3/ZnO/n-GaAs MOS capacitor. Chin. Phys. B 2013, 22, 076701. [Google Scholar] [CrossRef]
- Kim, S.H.; Joo, S.Y.; Jin, H.S.; Kim, W.B.; Park, T.J. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates. ACS Appl. Mater. Interfaces 2016, 8, 20880–20884. [Google Scholar] [CrossRef] [PubMed]
- Lucero, A.T.; Byun, Y.-C.; Qin, X.; Cheng, L.; Kim, H.; Wallace, R.M.; Kim, J. Formation of a ZnO/ZnS interface passivation layer on (NH4)2S treated In0.53Ga0.47As: Electrical and in-situ X-ray photoelectron spectroscopy characterization. Jpn. J. Appl. Phys. 2016, 55, 08PC02. [Google Scholar] [CrossRef]
- Henegar, A.J.; Cook, A.J.; Dang, P.; Gougousi, T. Native Oxide Transport and Removal During Atomic Layer Deposition of TiO2 Films on GaAs(100) Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, M.; Capezzuto, P.; Bruno, G.; Perna, G.; Capozzi, V. N2–H2 remote plasma nitridation for GaAs surface passivation. Appl. Phys. Lett. 2002, 81, 16–18. [Google Scholar] [CrossRef]
- Naritsuka, S.; Mori, M.; Takeuchi, Y.; Maruyama, T. X-ray Photoemission Spectroscopy Study of GaAs(111)B Substrate Nitridation using an RF-Radical Source. Jpn. J. Appl. Phys. 2012, 51, 048004. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, L.; Robertson, J. Nitrogen passivation at GaAs:Al2O3 interfaces. Appl. Phys. Lett. 2013, 102, 091606. [Google Scholar] [CrossRef]
- Anantathanasarn, S.; Ootomo, S.-y.; Hashizume, T.; Hasegawa, H. Surface passivation of GaAs by ultra-thin cubic GaN layer. Appl. Surf. Sci. 2000, 159–160, 456–461. [Google Scholar] [CrossRef]
- Monier, G.; Bideux, L.; Robert-Goumet, C.; Gruzza, B.; Petit, M.; Lábár, J.L.; Menyhárd, M. Passivation of GaAs(001) surface by the growth of high quality c-GaN ultra-thin film using low power glow discharge nitrogen plasma source. Surf. Sci. 2012, 606, 1093–1099. [Google Scholar] [CrossRef]
- Losurdo, M. Study of the mechanisms of GaN film growth on GaAs surfaces by thermal and plasma nitridation. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 2665. [Google Scholar] [CrossRef]
- Lu, H.H.; Xu, J.P.; Liu, L.; Wang, L.S.; Lai, P.T.; Tang, W.M. Improved interfacial quality of GaAs metal-oxide-semiconductor device with NH3-plasma treated yittrium-oxynitride as interfacial passivation layer. Microelectron. Reliab. 2015, 56, 17–21. [Google Scholar] [CrossRef]
- Liu, C.-W.; Xu, J.-P.; Liu, L.; Lu, H.-H. High-k gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment. Chin. Phys. B 2015, 24, 127304. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, G.-S.; Kim, S.-W.; Kim, J.-K.; Choi, C.; Park, J.-H.; Choi, R.; Yu, H.-Y. Non-Alloyed Ohmic Contacts on GaAs Using Metal-Interlayer-Semiconductor Structure With SF6 Plasma Treatment. IEEE Electron Device Lett. 2016, 37, 373–376. [Google Scholar] [CrossRef]
- Alekseev, P.A.; Dunaevskiy, M.S.; Ulin, V.P.; Lvova, T.V.; Filatov, D.O.; Nezhdanov, A.V.; Mashin, A.I.; Berkovits, V.L. Nitride Surface Passivation of GaAs Nanowires: Impact on Surface State Density. Nano Lett. 2014, 15, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Krylov, I.; Pokroy, B.; Ritter, D.; Eizenberg, M. Passivation of InGaAs interface states by thin AlN interface layers for metal-insulator-semiconductor applications. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 011205. [Google Scholar] [CrossRef]
- Weiland, C.; Rumaiz, A.K.; Price, J.; Lysaght, P.; Woick, J.C. Passivation of In0.53Ga0.47As/ZrO2 interfaces by AlN atomic layer deposition process. J. Appl. Phys. 2013, 114, 034107. [Google Scholar] [CrossRef]
- Gao, F.; Lee, S.J.; Kwong, D.L. Enhancement mode GaAs metal-oxide-semiconductor field-effect-transistor integrated with thin AlN surface passivation layer and silicon/phosphorus coimplanted source/drain. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 214. [Google Scholar] [CrossRef]
- Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al2O3/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition. Appl. Phys. Lett. 2014, 105, 033513. [Google Scholar] [CrossRef]
- Edmonds, M.; Kent, T.; Chagarov, E.; Sardashti, K.; Droopad, R.; Chang, M.; Kachian, J.; Park, J.H.; Kummel, A. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer. J. Am. Chem. Soc. 2015, 137, 8526–8533. [Google Scholar] [CrossRef] [PubMed]
Material | Passivation Method | Testing | Advantages | Disadvantages | Reference | |
---|---|---|---|---|---|---|
GaAs | ODT | XPS, AFM | Clean and smooth surfaces; Simple | Long processing time | [16,22] | |
XPS, PL | [17,20] | |||||
HDT | ATR-FTIR, PL | [18] | ||||
ODT+(NH4)2S | SEM, XPS | [6] | ||||
CnH2n+1, n ≥ 12 | XPS | [19,21] | ||||
ALD-Al2O3 | C-V, AFM | In situ processing | Possible suboxides residues | [26,27] | ||
Drain Current | [25] | |||||
AlN | Sputter | C-V | Environmental friendly | × | [51] | |
MOCVD | SIMS, C-V | Well Reliability | Complex equipment | [52] | ||
ZnO | MOCVD | C-V, XPS, FIRTEM | [33] | |||
ALD | XPS, SIMS, C-V | In situ processing | × | [34] | ||
+ZnS/ZnO | C-V, XPS | Clean surfaces | [37] | |||
+Annealing | C-V, XPS | Simple | AsOx residues | [7] | ||
NH3 Plasma | +LaON | C-V, I-V, XPS | Well removal of Ga/As oxides. | × | [46] | |
+YON | [45] | |||||
N2-H2 plasma | XPS | Lower As traps | Need to be carefully optimized | [39] | ||
N2 plasma | XPS | Well stability | [40,41,42,43,44] | |||
SF6+ZnO | XPS, C-V | Well thermal stability | Possible GaF3 residues | [47] | ||
ALD-TiO2+Anneal | FTIR, XRD | Extremely clean | Complex | [38] | ||
N2H4+Na2S | μ-PL | Stable effects | × | [48] | ||
InGaAs | (NH4)2S+Annealing | C-V | Simple | Inefficient passivate the states close to VBM | [12] | |
ALD | -AlN | TEM, C-V, XPS | In situ processing | High temperature annealing is required | [49,50] | |
-SiHx, Si | XPS STM | High surface uniformity | × | [32,53] | ||
-Al2O3 | C-V, XPS | In situ processing | Possible suboxides residues | [24,29,31] | ||
-TiO2/Al2O3 | XPS, C-V, SIMS | [8] | ||||
GaSb | ALD-Al2O3 | AFM, XPS, C-V | [28] | |||
(NH4)2S+2-propanol | XPS, PL | Low C signal | Possible oxide residues | [14] | ||
InP | ALD-ZnS | XPS, TEM, C-V | In situ processing | × | [36] | |
N2 Plasma | C-V | [3] | ||||
ODT | XPS, AFM | Simple | Long processing time | [15] | ||
InSb | (NH4)2S | XPS, AFM | [13] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Bo, B.; Yan, X.; Wang, C.; Chi, Y.; Yang, X. Brief Review of Surface Passivation on III-V Semiconductor. Crystals 2018, 8, 226. https://doi.org/10.3390/cryst8050226
Zhou L, Bo B, Yan X, Wang C, Chi Y, Yang X. Brief Review of Surface Passivation on III-V Semiconductor. Crystals. 2018; 8(5):226. https://doi.org/10.3390/cryst8050226
Chicago/Turabian StyleZhou, Lu, Baoxue Bo, Xingzhen Yan, Chao Wang, Yaodan Chi, and Xiaotian Yang. 2018. "Brief Review of Surface Passivation on III-V Semiconductor" Crystals 8, no. 5: 226. https://doi.org/10.3390/cryst8050226
APA StyleZhou, L., Bo, B., Yan, X., Wang, C., Chi, Y., & Yang, X. (2018). Brief Review of Surface Passivation on III-V Semiconductor. Crystals, 8(5), 226. https://doi.org/10.3390/cryst8050226