The Role of Chirality and Helicity between d- and l-Valine Optical Lattices
Abstract
:1. Introduction
2. Experimental
2.1. Sample Recrystallization
2.2. Optical Rotatory Angles of d- and l-Valine Crystal
2.3. Magnetic-Field Dependence of Specific Heat Measurement
3. Results and Discussion
3.1. Enthalpy and Entropy Changes of d- and l-Valine from 2–20 K
3.2. Debye Heat Capacity Anomaly and the Origin of (E-P) Bose–Einstein Condensation on d- and l-Valine Crystal Lattices
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Higgs, P.W. Nobel Lecture: Evading the Goldstone theorem. Rev. Mod. Phys. 2014, 86, 851. [Google Scholar] [CrossRef]
- Englert, F. Nobel Lecture: The BEH mechanism and its scalar boson. Rev. Mod. Phys. 2014, 86, 843. [Google Scholar] [CrossRef]
- Salam, A. Chirality, phase transitions and their induction in amino acids. Phys. Lett. B 1992, 288, 153–160. [Google Scholar] [CrossRef]
- Salam, A. The Origin of Chirality, the Role of Phase Translations and their Induction in Amino Acids. In Chemical Evolution: Origin of Life; Ponnamperuma, C., Chela-Flores, J., Eds.; A. Deepak Publishing: Hampton, VA, USA, 1993; pp. 101–117. [Google Scholar]
- Salam, A. Biological Macromolecules and the Phase Transitions They Bring About. In Conceptual Tools for Understanding Nature, Proceedings of 2nd International Symposium of Science and Epistemology Seminar, Trieste, Italy, April 1993; Costa, G., Claucci, G., Giorgi, M., Eds.; World Scientific Publishing: Singapore, 1995; pp. 209–220. [Google Scholar]
- Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Phys. Rep. 2007, 452, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 2002, 74, 1131. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zhang, Y.F.; Gong, Y. Crystal Fine Structure and Optical Rotatory Angle Study on Spin Superfluidity of Intermolecular N+ H… O? Hydrogen Bond Electron Cooper Pairing onto d-, l-, and dl-Valine Optical Lattices. Acta Phys. Chim. Sin. 2014, 30, 608–622. [Google Scholar]
- Cronin, J.R.; Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 1997, 275, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.Q. Temperature dependence of natural optical rotation study of d-, l-and dl-valine. Acta Phys. Chim. Sin. 2004, 20, 540–545. [Google Scholar]
- Paukov, I.E.; Kovalevskaya, Y.A.; Boldyreva, E.V. Low-temperature thermodynamic properties of l-and dl-valines. J. Therm. Anal. Calorim. 2013, 111, 905–910. [Google Scholar] [CrossRef]
- Jasiukiewicz, C.; Karpus, V. Debye temperature of cubic crystals. Solid State Commun. 2003, 128, 167–169. [Google Scholar] [CrossRef]
- Pantea, C.; Stroe, I.; Ledbetter, H.; Betts, J.B.; Zhao, Y.; Daemen, L.L.; Cynn, H.; Migliori, A. Osmium’s Debye temperature. J. Phys. Chem. Solids 2008, 69, 211–213. [Google Scholar] [CrossRef]
- Drebushchak, V.A.; Kovalevskaya, Y.A.; Paukov, I.E.; Boldyreva, E.V. Heat capacity of α-glycylglycine in a temperature range of 6 to 440 K. J. Therm. Anal. Calorim. 2006, 85, 485–490. [Google Scholar] [CrossRef]
- Baegueno, P.; de Tudela, R.P.; Miret-Artes, S.; Gonzalo, I. An alternative route to detect parity violating energy differences through Bose–Einstein condensation of chiral molecules. Phys. Chem. Chem. Phys. 2011, 13, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xu, W.; Liu, L.; Zhu, T.F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 2016, 8, 698. [Google Scholar] [CrossRef] [PubMed]
- Elbistan, M.; Duval, C.; Horvathy, P.A.; Zhang, P.M. Helicity of spin-extended chiral particles. Phys. Lett. A 2016, 380, 1677–1683. [Google Scholar] [CrossRef] [Green Version]
- Kubota, R.; Tashiro, S.; Shionoya, M. Chiral metal-macrocycle frameworks: Supramolecular chirality induction and helicity inversion of the helical macrocyclic structures. Chem. Sci. 2016, 7, 2217–2221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lin, S.; Qin, J.; Li, Y.; Li, B.; Yang, Y. Helical Polybissilsesquioxane Bundles Prepared Using a Self-Templating Approach. Chirality 2016, 28, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Caldas, H.; Morais, C.W.; Mota, A.L. Phase transition in asymmetrical superfluids: Equal Fermi surfaces. Phys. Rev. D 2005, 72, 045008. [Google Scholar] [CrossRef]
- Boehm, C.R.; Terentjev, E.M. Minimal Model of Intrinsic Chirality to Study the Folding Behavior of Helical Polymers. Macromolecules 2014, 47, 6086–6094. [Google Scholar] [CrossRef]
- Khamehchi, M.A.; Qu, C.; Mossman, M.E.; Zhang, C.; Engels, P. Spin-momentum coupled Bose–Einstein condensates with lattice band pseudospins. Nat. Commun. 2016, 7, 10867. [Google Scholar] [CrossRef] [PubMed]
T/K | /(J·mol−1·K−1) | T/K | /(J·mol−1·K−1) | T/K | /(J·mol−1·K−1) | T/K | /(J·mol−1·K−1) |
---|---|---|---|---|---|---|---|
H = 0 T | H = 1 T | H = 3 T | H = 5 T | ||||
2.033 | 0.0072 | 2.029 | 0.00715 | 2.03 | 0.00702 | 2.032 | 0.00698 |
3.062 | 0.02587 | 3.061 | 0.02568 | 3.071 | 0.02564 | 3.085 | 0.02596 |
4.094 | 0.06483 | 4.097 | 0.06364 | 4.112 | 0.06382 | 4.13 | 0.06518 |
5.11 | 0.1304 | 5.115 | 0.1287 | 5.133 | 0.1298 | 5.155 | 0.1312 |
6.128 | 0.232 | 6.131 | 0.2301 | 6.151 | 0.2313 | 6.174 | 0.2336 |
7.144 | 0.3791 | 7.15 | 0.3778 | 7.165 | 0.3779 | 7.187 | 0.384 |
8.132 | 0.5692 | 8.137 | 0.5688 | 8.151 | 0.567 | 8.164 | 0.5708 |
9.146 | 0.8239 | 9.15 | 0.8196 | 9.163 | 0.8219 | 9.174 | 0.8215 |
10.119 | 1.125 | 10.125 | 1.124 | 10.14 | 1.124 | 10.151 | 1.126 |
11.113 | 1.491 | 11.119 | 1.491 | 11.133 | 1.491 | 11.14 | 1.492 |
12.122 | 1.927 | 12.123 | 1.928 | 12.137 | 1.928 | 12.145 | 1.933 |
13.135 | 2.425 | 13.134 | 2.425 | 13.146 | 2.426 | 13.152 | 2.431 |
14.14 | 2.974 | 14.142 | 2.981 | 14.147 | 2.979 | 14.156 | 2.982 |
15.205 | 3.612 | 15.154 | 3.579 | 15.175 | 3.592 | 15.156 | 3.582 |
16.166 | 4.234 | 16.174 | 4.243 | 16.171 | 4.242 | 16.178 | 4.245 |
17.218 | 4.97 | 17.207 | 4.964 | 17.199 | 4.958 | 17.195 | 4.957 |
18.165 | 5.691 | 18.168 | 5.681 | 18.174 | 5.677 | 18.175 | 5.68 |
19.197 | 6.452 | 19.194 | 6.454 | 19.192 | 6.454 | 19.184 | 6.45 |
20.183 | 7.256 | 20.192 | 7.255 | 20.19 | 7.253 | 20.193 | 7.27 |
T/K | /(J·mol−1·K−1) | T/K | /(J·mol−1·K−1) | T/K | /(J·mol−1·K−1) | T/K | /(J·mol−1·K−1) |
---|---|---|---|---|---|---|---|
H = 0 T | H = 1 T | H = 3 T | H = 5 T | ||||
2.032 | 0.00694 | 2.027 | 0.00691 | 2.031 | 0.00679 | 2.031 | 0.00684 |
3.061 | 0.02477 | 3.062 | 0.02459 | 3.07 | 0.02432 | 3.084 | 0.02479 |
4.093 | 0.0619 | 4.099 | 0.06133 | 4.113 | 0.06159 | 4.13 | 0.06229 |
5.112 | 0.1244 | 5.118 | 0.1234 | 5.133 | 0.1238 | 5.154 | 0.126 |
6.129 | 0.2212 | 6.131 | 0.2195 | 6.152 | 0.2201 | 6.172 | 0.2242 |
7.145 | 0.3639 | 7.149 | 0.3624 | 7.165 | 0.3637 | 7.188 | 0.3676 |
8.131 | 0.5495 | 8.137 | 0.5476 | 8.15 | 0.548 | 8.166 | 0.5493 |
9.146 | 0.7941 | 9.151 | 0.7938 | 9.163 | 0.7932 | 9.175 | 0.7954 |
10.119 | 1.09 | 10.125 | 1.089 | 10.139 | 1.089 | 10.149 | 1.093 |
11.115 | 1.448 | 11.121 | 1.449 | 11.134 | 1.448 | 11.141 | 1.45 |
12.123 | 1.876 | 12.129 | 1.877 | 12.139 | 1.878 | 12.147 | 1.881 |
13.137 | 2.361 | 13.14 | 2.367 | 13.148 | 2.367 | 13.156 | 2.372 |
14.14 | 2.906 | 14.143 | 2.908 | 14.149 | 2.911 | 14.156 | 2.909 |
15.193 | 3.523 | 15.185 | 3.516 | 15.179 | 3.514 | 15.165 | 3.501 |
16.167 | 4.145 | 16.168 | 4.146 | 16.17 | 4.151 | 16.18 | 4.153 |
17.211 | 4.863 | 17.208 | 4.863 | 17.206 | 4.861 | 17.207 | 4.862 |
18.173 | 5.555 | 18.167 | 5.564 | 18.172 | 5.57 | 18.171 | 5.574 |
19.198 | 6.333 | 19.194 | 6.335 | 19.192 | 6.339 | 19.193 | 6.339 |
20.187 | 7.122 | 20.191 | 7.127 | 20.19 | 7.123 | 20.19 | 7.124 |
H/T | Crystal | ΔH/(J∙mol−1) | ΔS/(J·mol−1·K−1) | ΔHD–ΔHL (J∙mol−1) | ΔSD–ΔSL (J·mol−1·K−1) |
---|---|---|---|---|---|
0 | d-Val | 39.59867 | 2.67648 | 0.9293 | 0.06683 |
l-Val | 38.66940 | 2.60965 | |||
1 | d-Val | 39.57943 | 2.67387 | 0.90479 | 0.06520 |
l-Val | 38.67464 | 2.60867 | |||
3 | d-Val | 39.53354 | 2.66950 | 0.87851 | 0.06356 |
l-Val | 38.65503 | 2.60594 | |||
5 | d-Val | 39.54130 | 2.66987 | 0.89656 | 0.06455 |
l-Val | 38.64474 | 2.60532 |
Debye Temperature (K) | H (Tesla) | |||
---|---|---|---|---|
0 | 1 | 3 | 5 | |
d-valine | 127.46 | 127.33 | 127.24 | 127.22 |
l-valine | 128.05 | 127.9 | 127.76 | 127.82 |
H/T | Bose–Einstein Peak (k) | |
---|---|---|
d-Valine | l-Valine | |
0 | 11.2 | 11.49 |
1 | 11.32 | 11.59 |
3 | 11.44 | 11.73 |
5 | 11.46 | 11.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, W.; Gong, Y. The Role of Chirality and Helicity between d- and l-Valine Optical Lattices. Crystals 2018, 8, 281. https://doi.org/10.3390/cryst8070281
Li J, Wang W, Gong Y. The Role of Chirality and Helicity between d- and l-Valine Optical Lattices. Crystals. 2018; 8(7):281. https://doi.org/10.3390/cryst8070281
Chicago/Turabian StyleLi, Jingjing, Wenqing Wang, and Yan Gong. 2018. "The Role of Chirality and Helicity between d- and l-Valine Optical Lattices" Crystals 8, no. 7: 281. https://doi.org/10.3390/cryst8070281
APA StyleLi, J., Wang, W., & Gong, Y. (2018). The Role of Chirality and Helicity between d- and l-Valine Optical Lattices. Crystals, 8(7), 281. https://doi.org/10.3390/cryst8070281