Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single Crystals
2.2. Accurate X-ray Analysis
3. Single Crystals of Pure KTP
4. Single Crystals of KTA
4.1. Changes in the Framework
4.2. Changes in the Channels
5. Single Crystals of KTP Doped with Zr, Hf, and Nb
5.1. Changes in the Framework
5.2. Changes in the Channels
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zumsteg, F.G.; Bierlein, J.D.; Gier, T.E. KxRb1–xTiOPO4: A new nonlinear optical material. J. Appl. Phys. 1976, 47, 4980–4985. [Google Scholar] [CrossRef]
- Stucky, G.D.; Phillips, M.L.F.; Gier, T.E. The potassium titanyl phosphate structure field: A model for new nonlinear optical materials. Chem. Mater. 1989, 1, 492–509. [Google Scholar] [CrossRef]
- Hagerman, M.E.; Poeppelmer, K.R. Review of the structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices. Chem. Mater. 1995, 7, 602–621. [Google Scholar] [CrossRef]
- Satyanarayan, M.N.; Deepthy, A.; Bhat, H.L. Potassium titanyl phosphate and its isomorphs: Growth, properties, and applications. Crit. Rev. Solid State Mater. Sci. 1999, 24, 103–191. [Google Scholar] [CrossRef]
- Fayaz, G.R.; Ghotbi, M.; Ebrahim-Zadeh, M. Efficient second-harmonic generation of tunable femtosecond pulses into the blue in periodically poled KTP. Appl. Phys. Lett. 2005, 86, 061110. [Google Scholar] [CrossRef]
- Canalias, C.; Pasiskevicius, V.; Fokine, M.; Laurell, F. Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4. Appl. Phys. Lett. 2005, 86, 181105. [Google Scholar] [CrossRef]
- Fiorentino, M.; Kuklewicz, C.E.; Wong, F.N.C. Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones. Opt. Express 2005, 13, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Tseitlin, M. Growth of large size high optical quality KTP-type crystals. J. Сryst. Growth 2010, 312, 1059–1064. [Google Scholar] [CrossRef]
- Bierlein, J.D.; Vanherzeele, H.; Ballman, A.A. Linear and nonlinear optical properties of flux-grown KTiOAsO4. Appl. Phys. Lett. 1989, 54, 783–785. [Google Scholar] [CrossRef]
- Losevskaya, T.Y.; Alekseeva, O.A.; Yanovskii, V.K.; Voronkova, V.I.; Sorokina, N.I.; Simonov, V.I.; Stefanovich, S.Y.; Ivanov, S.A.; Eriksson, S.; Zverkov, S.A. Structure and properties of niobium-doped potassium titanil phosphate crystals. Crystallogr. Rep. 2000, 55, 739–743. [Google Scholar] [CrossRef]
- Voronkova, V.I.; Yanovskii, V.K.; Losevskaya, T.Y.; Stefanovich, S.Y.; Zver’kov, S.A.; Alekseeva, O.A.; Sorokina, N.I. Electrical and nonlinear optical properties of KTiOPO4 single crystals doped with niobium, antimony, and tantalum. Crystallogr. Rep. 2004, 49, 123–129. [Google Scholar] [CrossRef]
- Thomas, P.A.; Watts, B.E. An Nb-doped analogue of KTiOPO4; structural and nonlinear optical properties. Solid State Commun. 1990, 73, 97–100. [Google Scholar] [CrossRef]
- Chani, V.I.; Shimamura, K.; Endo, S.; Fukuda, T. Growth of mixed crystals of the KTiOPO4 (KTP) family. J. Cryst. Growth 1997, 171, 472–476. [Google Scholar] [CrossRef]
- Voronkova, V.I.; Yanovskii, V.K.; Leont’eva, I.N.; Agapova, E.I.; Kharitonova, E.P.; Stefanovich, S.Y.; Zver’kov, S.A. Growth and properties of Zr-doped KTiOPO4 crystals. Inorg. Mater. 2004, 40, 1321–1323. [Google Scholar] [CrossRef]
- Orlova, E.I.; Kharitonova, E.P.; Novikova, N.E.; Verin, I.A.; Alekseeva, O.A.; Sorokina, N.I.; Voronkova, V.I. Synthesis, properties, and structure of potassium titanyl phosphate single crystals doped with hafnium. Crystallogr. Rep. 2010, 55, 404–411. [Google Scholar] [CrossRef]
- Tordjman, I.; Masse, R.; Guitel, J.-C. Structure cristalline du monophosphate KTiPO5. Z. Kristallogr. 1974, 139, 103–115. [Google Scholar] [CrossRef]
- Yanovskii, V.K.; Voronkova, V.I. Ferroelectric phase transitions and properties of crystals of KTiOPO4 family. Phys. Status Solidi 1986, 93, 665–668. [Google Scholar] [CrossRef]
- Belokoneva, E.L.; Knight, K.S.; David, W.I.; Mill, B.V. Structural phase transitions in germanate analogues of KTiOPO4 investigated by high-resolution neutron powder diffraction. J. Phys. Condens. Matter 1997, 9, 3833–3851. [Google Scholar] [CrossRef]
- Sorokina, N.I.; Voronkova, V.I.; Yanovskii, V.K.; Verin, I.A.; Simonov, V.I. Crystal structures of compounds in the KTiOPO4–KGeOPO4 System. Crystallogr. Rep. 1996, 41, 432–435. [Google Scholar]
- Krotova, O.D.; Sorokina, N.I.; Verin, I.A.; Voronkova, V.I.; Yanovskii, V.K.; Simonov, V.I. Structure and properties of single crystals of tin-doped potassium titanyl phosphate. Crystallogr. Rep. 2003, 48, 925–932. [Google Scholar] [CrossRef]
- Alekseeva, O.A.; Dudka, A.P.; Sorokina, N.I.; Pietraszko, A.; Rabadanov, M.K.; Agapova, E.I.; Voronkova, V.I.; Simonov, V.I. Crystal structure of potassium titanyl phosphate doped with zirconium. Crystallogr. Rep. 1996, 41, 432–435. [Google Scholar] [CrossRef]
- Mayo, S.C.; Thomas, P.A.; Teat, S.J.; Loiacono, G.M.; Loiacono, D.N. Structure and non-linear optical properties of KTiOAsO4. Acta Crystallogr. B 1994, 50, 655–662. [Google Scholar] [CrossRef]
- Almgren, J.; Streltsov, V.A.; Sobolev, A.N.; Figgis, B.N.; Albertsson, J. Structure and electron density in RbTiOAsO4 at 9.6 K. Acta Crystallogr. B 1999, 55, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Streltsov, V.A.; Nordborg, J.; Albertsson, J. Synchrotron X-ray analysis of RbTiOAsO4. Acta Crystallogr. B 2000, 56, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Zhang, S. Chemical bond analysis of the correlation between crystal structure and nonlinear optical properties of complex crystals. Physica B 1999, 262, 78–83. [Google Scholar] [CrossRef]
- Thomas, P.A.; Baldwin, A.; Dupree, R.; Blaha, P.; Schwarz, K.; Samoson, A.; Gan, Z.J. Structure–property relationships in the nonlinear optical crystal KTiOPO4 investigated using NMR and ab initio DFT calculations. J. Phys. Chem. B 2004, 108, 4324–4331. [Google Scholar] [CrossRef]
- Ivanov, V.A.; Burdov, V.A.; Marychev, M.O.; Titaev, D.N.; Faddeev, M.A.; Chuprunov, E.V. On the effect of structural and symmetrical features of potassium titanyl phosphate crystals with different contents of niobium, antimony, and zirconium on the second-harmonic intensity. Crystallogr. Rep. 2008, 53, 678–682. [Google Scholar] [CrossRef]
- Yashima, M.; Komatsu, T. Order–disorder and displacive components in the ferroelectric–paraelectric phase transition of potassium titanyl phosphate KTiOPO4. Chem. Commun. 2009, 1070–1072. [Google Scholar] [CrossRef] [PubMed]
- Norberg, S.T.; Thomas, P.A.; Tucker, M.G. A neutron total scattering study of local coordination in KTiOPO4 from room temperature to 900 °C. J. Phys. Condens. Matter 2011, 23, 175401. [Google Scholar] [CrossRef] [PubMed]
- Reshak, A.H.; Kityk, I.V.; Auluck, S. Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: Theory and experiment. J. Phys. Chem. B 2010, 114, 16705–16712. [Google Scholar] [CrossRef] [PubMed]
- Atuchin, V.V.; Kesler, V.G.; Meng, G.; Lin, Z.S. The electronic structure of RbTiOPO4 and the effect of the A-site cation substitution in KTiOPO4-family crystals. J. Phys. Condens. Matter 2012, 24, 45503. [Google Scholar] [CrossRef] [PubMed]
- Ghoohestani, M.; Arab, A.; Hashemifar, S.J.; Sadeghi, H. Ab-initio investigation of Rb substitution in KTP single crystals. J. Appl. Phys. 2018, 123, 015702. [Google Scholar] [CrossRef]
- Sorokina, N.I.; Voronkova, V.I. Structure and properties of crystals in the potassium titanyl phosphate family: A review. Crystallogr. Rep. 2007, 52, 80–93. [Google Scholar] [CrossRef]
- Novikova, N.E.; Verin, I.A.; Sorokina, N.I.; Alekseeva, O.A.; Voronkova, V.I.; Tseitlin, M.; Roth, M. Structure of KTiOPO4 single crystals grown by the top-seeded solution and spontaneous flux crystallization methods. Crystallogr. Rep. 2008, 53, 942–951. [Google Scholar] [CrossRef]
- Novikova, N.E.; Verin, I.A.; Sorokina, N.I.; Alekseeva, O.A.; Tseitlin, M.; Roth, M. Structure of KTiOAsO4 single crystals at 293 and 30 K. Crystallogr. Rep. 2010, 55, 412–423. [Google Scholar] [CrossRef]
- Novikova, N.E.; Verin, I.A.; Sorokina, N.I.; Alekseeva, O.A.; Agapova, E.I.; Voronkova, V.I. Structural reasons for the nonlinear optical properties of KTi0.96Zr0.04OPO4 single crystals. Crystallogr. Rep. 2009, 54, 219–227. [Google Scholar] [CrossRef]
- Novikova, N.E.; Verin, I.A.; Sorokina, N.I.; Alekseeva, O.A.; Orlova, E.I.; Voronkova, V.I. X-ray diffraction study of KTiOPO4 single crystals doped with hafnium. Crystallogr. Rep. 2011, 56, 411–419. [Google Scholar] [CrossRef]
- Novikova, N.E.; Sorokina, N.I.; Alekseeva, O.A.; Verin, I.A.; Kharitonova, E.P.; Orlova, E.I.; Voronkova, V.I. Accurate X-ray diffraction studies of KTiOPO4 single crystals doped with niobium. Crystallogr. Rep. 2017, 62, 66–77. [Google Scholar] [CrossRef]
- Roth, M.; Angert, N.; Tseitlin, M.; Alexandrovski, A. On the optical quality of KTP crystals for nonlinear optical and electro-optic applications. Opt. Mater. 2001, 16, 131–136. [Google Scholar] [CrossRef]
- Voronkova, V.I.; Yanovskii, V.K. Growth of the KTiOPO4-group crystals from the solution in a melt and their properties. Inorg. Mater. 1988, 24, 205–208. [Google Scholar]
- Angert, N.; Tseltlin, M.; Yashchin, E.; Roth, M. Ferroelectric phase transition temperatures of KTiOPO4 crystals grown from self-fluxes. Appl. Phys. Lett. 1995, 67, 1941–1943. [Google Scholar] [CrossRef]
- Urenski, P.; Gorbatov, N.; Rosenman, G. Dielectric relaxation in flux-grown KTiOPO4 and isomorphic crystals. J. Appl. Phys. 2001, 89, 1850–1855. [Google Scholar] [CrossRef]
- Tseitlin, M.; Mojaev, E.; Roth, M. Growth of high resestivity RbTiOPO4 crystals. J. Cryst. Growth 2008, 310, 1929–1933. [Google Scholar] [CrossRef]
- Voronkova, V.I.; Stefanovich, S.Y.; Yanovskii, V.K. Ferroelectric phase transitions and properties of nonlinear optical crystals of KTiOPO4 and its analogs. Sov. J. Quantum Electron. 1988, 18, 480–483. [Google Scholar] [CrossRef]
- Kurtz, S.K.; Perry, T.T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 39, 3798–3813. [Google Scholar] [CrossRef]
- Novikova, N.E. Structure and Pyroelectric Properties of Single Crystals of Potassium Titanyl Phosphate Family. Ph.D. Thesis, Shubnikov Institute of Crystallography of Russian Academy of Sciences, Moscow, Russia, 21 February 2012. (In Russian). [Google Scholar]
- Muradyan, L.A.; Radaev, S.F.; Simonov, V.I. Accurate structural studies of crystals and correlation of refined parameters. In Methods of Structural Analysis; Nauka: Moscow, Russia, 1989; pp. 5–20. ISBN 5-02-000674-2. (In Russian) [Google Scholar]
- Northrup, P.A.; Parise, J.B.; Cheng, L.K.; Cheng, L.T.; McCarron, E.M. High-temperature single-crystal X-ray diffraction studies of potassium and (cesium, potassium) titanyl arsenates. Chem. Mater. 1994, 6, 434–440. [Google Scholar] [CrossRef]
- Larsen, F.K. Diffraction studies of crystals at low temperatures—Crystallography bellow 77 K. Acta Crystallogr. B 1995, 51, 468–482. [Google Scholar] [CrossRef]
Occupancies of the Potassium Atomic Positions | ||||||
Position | K1 | K1′ | K1″ | K2 | K2′ | K2″ |
KTP 1 | 0.925(2) | 0.050(2) | 0.032(2) | 0.846(2) | 0.071(2) | 0.080(2) |
KTP 2 | 0.838(1) | 0.092(1) | 0.058(1) | 0.843(2) | 0.061(2) | 0.090(2) |
Distances, Å | ||||||
Positions | K1–K1′ | K1–K1″ | K2–K2′ | K2–K2″ | K1′–K1″ | K2′–K2″ |
KTP 1 | 0.300(4) | 0.371(8) | 0.295(3) | 0.235(4) | 0.295(9) | 0.390(4) |
KTP 2 | 0.284(3) | 0.277(6) | 0.321(3) | 0.246(4) | 0.286(5) | 0.414(4) |
Chemical Bonds | KTP | KTA |
---|---|---|
Ti2–O6–P(As)1 | 0.0162 | 0.0275 |
Ti2–O5–P(As)1 | 0.1582 | 0.1763 |
Ti1–O4–P(As)1 | −0.0575 | −0.0711 |
Ti1–O3–P(As)1 | 0.4427 | 0.6520 |
Ti1–O7–P(As)2 | 0.1732 | 0.2354 |
Ti1–O8–P(As)2 | 0.0555 | 0.1071 |
Ti2–O9–P(As)2 | −0.0208 | −0.0553 |
Ti2–O10–P(As)2 | 0.0491 | 0.0405 |
Occupancies of the Potassium Atomic Positions | ||||||
Position | K1 | K1′ | K1″ | K2 | K2′ | K2″ |
KTP | 0.925(2) | 0.050(2) | 0.032(2) | 0.846(2) | 0.071(2) | 0.080(2) |
KTA | 0.865(7) | 0.087(5) | 0.043(8) | 0.820(9) | 0.089(8) | 0.088(8) |
Distances, Å | ||||||
Positions | K1–K1′ | K1–K1″ | K2–K2′ | K2–K2″ | K1′–K1″ | K2′–K2″ |
KTP | 0.300(4) | 0.371(8) | 0.295(3) | 0.235(4) | 0.295(9) | 0.390(4) |
KTA | 0.295(5) | 0.372(7) | 0.303(5) | 0.218(6) | 0.262(7) | 0.408(9) |
Bonds | KTP | KTP: 4%Zr | KTP: 1.5%Hf | KTP: 3.5%Hf | KTP: 12.8%Hf | KTP: 4%Nb | KTP: 6%Nb |
---|---|---|---|---|---|---|---|
ΔTi1–O2–Ti1–O1 | 0.2563(4) (100%) | 0.2430(5) (−5.2%) | 0.2476(5) (−3.4%) | 0.2416(6) (−5.7%) | 0.2004(6) (−21.8%) | 0.2312(8) (−9.8%) | 0.2388(7) (−6.8%) |
ΔTi2–O1–Ti2–O2 | 0.3479(4) (100%) | 0.3298(5) (−5.2%) | 0.3263(5) (−6.2%) | 0.3178(6) (−8.7%) | 0.2520(6) (−27.6%) | 0.3348(5) (−3.7%) | 0.3361(5) (−3.4%) |
ΔNb1–O2–Nb1–O1 | – | – | – | – | – | 0.114(5) | 0.093(4) |
ΔNb2–O1–Nb2–O2 | – | – | – | – | – | 0.096(3) | 0.073(2) |
Bonds | KTP | KTP: 4%Zr | KTP: 1.5%Hf | KTP: 3.5%Hf | KTP: 12.8%Hf | KTP: 4%Nb | KTP: 6%Nb |
---|---|---|---|---|---|---|---|
Ti2–O6–P(As)1 | 0.0181 | 0.0169 | 0.0123 | 0.0140 | 0.0058 | 0.0154 | 0.0138 |
Ti2–O5–P(As)1 | 0.1559 | 0.1540 | 0.1530 | 0.1563 | 0.1511 | 0.1559 | 0.1550 |
Ti1–O4–P(As)1 | −0.0599 | −0.0384 | −0.0429 | −0.0419 | −0.0075 | −0.0410 | −0.0449 |
Ti1–O3–P(As)1 | 0.4445 | 0.4347 | 0.4367 | 0.4275 | 0.4045 | 0.4237 | 0.4265 |
Ti1–O7–P(As)2 | 0.1787 | 0.1695 | 0.1622 | 0.1673 | 0.1721 | 0.1726 | 0.1583 |
Ti1–O8–P(As)2 | 0.0510 | 0.0517 | 0.0529 | 0.0518 | 0.0541 | 0.0533 | 0.0640 |
Ti2–O9–P(As)2 | −0.0218 | −0.0194 | −0.0139 | −0.0211 | −0.0216 | −0.0112 | −0.0072 |
Ti2–O10–P(As)2 | 0.0507 | 0.0475 | 0.0425 | 0.0647 | 0.0406 | 0.0412 | 0.0418 |
Occupancies of the Potassium Atomic Positions | |||||||
Position | K1 | K1′ | K1″ | K2 | K2′ | K2″ | K3 |
KTP | 0.838(1) | 0.092(1) | 0.058(1) | 0.843(2) | 0.061(2) | 0.090(2) | – |
KTP:4%Zr | 0.770(4) | 0.135(6) | 0.091(6) | 0.722(6) | 0.146(6) | 0.126(7) | – |
KTP:1.5%Hf | 0.863(7) | 0.080(7) | 0.050(7) | 0.851(9) | 0.080(9) | 0.060(8) | – |
KTP:3.5%Hf | 0.823(3) | 0.099(3) | 0.080(3) | 0.817(2) | 0.090(2) | 0.087(2) | – |
KTP:12.8%Hf | 0.869(2) | 0.078(2) | 0.040(2) | 0.845(2) | 0.080(2) | 0.059(2) | – |
KTP:4%Nb | 0.827(2) | 0.052(2) | 0.037(2) | 0.827(4) | 0.058(4) | 0.036(4) | 0.053(2) |
KTP:6%Nb | 0.734(4) | 0.187(5) | – | 0.670(5) | 0.146(4) | 0.104(5) | 0.062(4) |
Distances, Å | |||||||
Positions | K1–K1′ | K1–K1″ | K2–K2′ | K2–K2″ | K1′–K1″ | K2′–K2″ | K1–K3 1 |
KTP | 0.284(3) | 0.277(6) | 0.321(3) | 0.246(4) | 0.286(5) | 0.414(4) | – |
KTP:4%Zr | 0.263(6) | 0.180(7) | 0.262(7) | 0.186(7) | 0.367(8) | 0.278(9) | – |
KTP:1.5%Hf | 0.233(6) | 0.320(10) | 0.234(8) | 0.249(5) | 0.250(10) | 0.430(20) | – |
KTP:3.5%Hf | 0.330(10) | 0.227(6) | 0.294(5) | 0.249(7) | 0.170(10) | 0.390(10) | – |
KTP:12.8%Hf | 0.317(6) | 0.324(9) | 0.300(8) | 0.257(8) | 0.310(10) | 0.390(10) | – |
KTP:4%Nb | 0.416(4) | 0.456(8) | 0.439(5) | 0.379(7) | 0.456(8) | 0.656(8) | 1.614(5) |
KTP:6%Nb | 0.251(3) | – | 0.235(7) | 0.188(8) | – | 0.292(9) | 1.629(5) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikova, N.E.; Sorokina, N.I.; Verin, I.A.; Alekseeva, O.A.; Orlova, E.I.; Voronkova, V.I.; Tseitlin, M. Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals. Crystals 2018, 8, 283. https://doi.org/10.3390/cryst8070283
Novikova NE, Sorokina NI, Verin IA, Alekseeva OA, Orlova EI, Voronkova VI, Tseitlin M. Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals. Crystals. 2018; 8(7):283. https://doi.org/10.3390/cryst8070283
Chicago/Turabian StyleNovikova, Nataliya E., Nataliya I. Sorokina, Igor A. Verin, Olga A. Alekseeva, Ekaterina I. Orlova, Valentina I. Voronkova, and Michael Tseitlin. 2018. "Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals" Crystals 8, no. 7: 283. https://doi.org/10.3390/cryst8070283
APA StyleNovikova, N. E., Sorokina, N. I., Verin, I. A., Alekseeva, O. A., Orlova, E. I., Voronkova, V. I., & Tseitlin, M. (2018). Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals. Crystals, 8(7), 283. https://doi.org/10.3390/cryst8070283