Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Preparation of Nanosuspensions
3. Characterisation and Evaluation of Nanosuspension
3.1. Particle Size, Size Distribution and Zeta Potential Analysis
3.2. Morphology of Freeze-Dried Nanosuspensions
3.3. Fourier Transform Infrared Spectroscopy (FT-IR)
3.4. Differential Scanning Calorimetry (DSC)
3.5. Saturation Solubility
Standard Curve of Zerumbone
3.6. In Vitro Dissolution Testing
4. Results and Discussion
4.1. Preparation and Optimisation of Nanosuspension
4.2. Characterization and Evaluation of Nanosuspension
4.2.1. Particle Size and Zeta Potential Analysis
4.2.2. Morphology Analysis
4.2.3. Differential Scanning Calorimetry
4.2.4. Fourier Transforms Infrared Spectroscopy (FT-IR)
4.3. Physical Stability
4.3.1. Physical Stability of Zerumbone Nanosuspension Stabilized by SDS
4.3.2. Physical Stability of Zerumbone Nanosuspensions Stabilized by HPMC
4.4. Saturation Solubility
4.5. In Vitro Dissolution Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Summary of WHO guidelines for the assessment of herbal medicines. Herb. Gram. 1993, 28, 13–14. [Google Scholar]
- Bhuiyan, M.N.I.; Chowdhury, J.U.; Begum, J. Chemical investigation of the leaf and rhizome essential oils of Zingiber zerumbet (L.) Smith from Bangladesh. Bangladesh J. Pharmacol. 2008, 4, 9–12. [Google Scholar] [CrossRef]
- Kitayama, T.; Okamoto, T.; Hill, R.K.; Kawai, Y.; Takahashi, S.; Yonemori, S.; Yamamoto, Y.; Ohe, K.; Uemura, S.; Sawada, S. Chemistry of Zerumbone. 1. Simplified Isolation, Conjugate Addition Reactions, and a Unique Ring Contracting Transannular Reaction of Its Dibromide. J. Org. Chem. 1999, 64, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Nimgirawath, S.; Raston, C.; Sittatrakul, A.; Thadaniti, S.; Thirasasana, N.; White, A. Crystal structure of zerumbone [(E,E,E)-2,6,9,9-Tetramethylcycloundeca-2,6,10-trien-1-one]. Aust. J. Chem. 1981, 34, 2243. [Google Scholar] [CrossRef]
- Abdul, A.B.; Abdelwahab, S.I.; Al-Zubairi, A.S.; Elhassan, M.M.; Murali, S.M. Anticancer and Antimicrobial Activities of Zerumbone from the Rhizomes of Zingiber zerumbut. Int. J. Pharmacol. 2008, 4, 301–304. [Google Scholar] [CrossRef]
- Sidahmed, H.M.A.; Hashim, N.M.; Abdulla, M.A.; Ali, H.M.; Mohan, S.; Abdelwahab, S.I.; Taha, M.M.E.; Fai, L.M.; Vadivelu, J. Antisecretory, Gastroprotective, Antioxidant and Anti-Helicobcter Pylori Activity of Zerumbone from Zingiber zerumbet (L.) Smith. PLoS ONE 2015, 10, e0121060. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.S.; Rasedee, A.; Yeap, S.K.; Othman, H.H.; Chartrand, M.S.; Namvar, F.; Abdul, A.B.; How, C.W. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. Biomed. Res. Int. 2014, 2014, 920742. [Google Scholar] [CrossRef] [PubMed]
- Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004, 3, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Yadollahi, R.; Vasilev, K.; Simovic, S. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs. J. Nanomater. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Shegokar, R.; Müller, R.H. Nanosuspensions: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 2010, 399, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanosuspensionline danazol in beagle dogs. Int. J. Pharm. 1995, 125, 91–97. [Google Scholar] [CrossRef]
- Müller, R.H.; Möschwitzer, J.; Bushrab, F.N. Manufacturing of Nanoparticles by Milling and Homogenization Techniques. In Nanoparticle Technology for Drug Delivery; CRC Press: Boca Raton, FL, USA, 2006; pp. 45–76. [Google Scholar]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Pharmaceutical Nanosuspensions for Medicament Administration as Systems with Increased Saturation Solubility and Rate of Solution. U.S. Patent No. 5,858,410, 1999. Available online: https://patents.google.com/patent/US5858410A/en (accessed on 27 July 2015).
- Verma, S.; Huey, B.D.; Burgess, D.J. Scanning Probe Microscopy Method for Nanosuspension Stabilizer Selection. Langmuir 2009, 25, 12481–12487. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Kumar, S.; Gokhale, R.; Burgess, D.J. Physical stability of nanosuspensions: Investigation of the role of stabilizers on Ostwald ripening. Int. J. Pharm. 2011, 406, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kipp, J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 2004, 284, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.R.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int. J. Pharm. 2009, 371, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Dev, S. Studies in sesquiterpenes—XVI: Zerumbone, a monocyclic sesquiterpene ketone. Tetrahedron 1960, 8, 171–180. [Google Scholar] [CrossRef]
- Rasedee, A.; Abdul, A.B.; Zeenathul, N.A.; Rahman, H.; Yeap, S.; Wan Ghani, W.N.H.; Othman, H.H.; How, C.W. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line. Int. J. Nanomed. 2014, 9, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravichandran, R. In vivo pharmacokinetic studies of albendazole nanoparticulate oral formulations for improved bioavailability. Int. J. Green Nanotechnol. Biomed. 2010, 2, 46–53. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Md, S.; Kit, B.C.M.; Jagdish, S.; David, D.J.P.; Pandey, M.; Chatterjee, L.A. Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System. Crystals 2018, 8, 286. https://doi.org/10.3390/cryst8070286
Md S, Kit BCM, Jagdish S, David DJP, Pandey M, Chatterjee LA. Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System. Crystals. 2018; 8(7):286. https://doi.org/10.3390/cryst8070286
Chicago/Turabian StyleMd, Shadab, Bradon C.M Kit, Sumeet Jagdish, Dexter J.P David, Manisha Pandey, and Lipika Alok Chatterjee. 2018. "Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System" Crystals 8, no. 7: 286. https://doi.org/10.3390/cryst8070286
APA StyleMd, S., Kit, B. C. M., Jagdish, S., David, D. J. P., Pandey, M., & Chatterjee, L. A. (2018). Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System. Crystals, 8(7), 286. https://doi.org/10.3390/cryst8070286